
On-the-fly CSL Property Monitoring in STAMINA

The approach described below closely monitors CSL property checking, and uses basic decision
procedures to quickly terminate state expansion as soon as sufficient conclusion can be drawn. This
approach can potentially improve STAMINA’s performance.
Assumptions:

• Verify a single non-nested CSL property in the form of P=?(Φ U [0,T ] Ψ), where p ∈ [0, 1].
• The approach described below assumes round-off errors in probability are properly handled

to guarantee termination.
• Standard BFS is used for state space expansion. Note that state exploration assumes standard

BSF for all states implemented in STAMINA before, not including the work Brett is doing now
on incremental state expansion and verification. DFS will not work as it violates assumptions
for Theorem 0.1.

Background: Path satisfiability for formula Φ U Ψ is determined if either of the following con-
ditions holds: (1) If a state on a path is found to satisfy Ψ for the first time, then satisfiability
of Φ U Ψ can be determined without needing all its successor states on this path; and (2) a path
starting from a given initial state can never satisfy Φ U Ψ , if it includes a state satisfying ¬Φ ∧¬Ψ .
These conditions allow a search path to terminate during state exploration as soon as satisfiability
of Φ U Ψ is determined. A finite path ρ is a state-transition sequence starting with an initial state
and ending with the last state last(ρ). A path is an early-terminated path, denoted as ρ, if last(ρ)
satisfies either ¬Φ∧¬Ψ or Ψ . On the other hand, all states on a non-early-terminated path, denoted
as ρ, must satisfy Φ ∧ ¬Ψ .
Methods: Currently, STAMINA shortens each early-terminated path by making its last state
absorbing, where its only outgoing transition a self-loop with probability 1. For each non-early-
terminated path, it truncates it by directing the last state’s outgoing transitions to a single abstract
absorbing state.

In this improved approach, we create three different abstract absorbing states instead to collect
probabilities of satisfying Φ U [0,T ] Ψ , failing it, and unknown, respectively. Note that we only
redirect those outgoing transitions to an abstract state if such transition leads to an unexplored
state. For the last state of each early-terminated path, the choice of abstract state to redirect such
transitions depends on the satisfiability of Φ U Ψ of the last state. Conditions for these three
abstract absorbing states are listed below.
• abssat: Absorbing state for all early-terminated path whose last state satisfies Ψ .
• absunsat: Absorbing state for all early-terminated path whose last state satisfies ¬Φ ∧ ¬Ψ .
• abs?: Absorbing state for all non-early-terminated but truncated paths. Satisfiability of

Φ U Ψ cannot be determined yet. The last state of a non-early-terminated path satisfies
Φ ∧ ¬Ψ .
• Pr

abssat
, Pr

absunsat
, and Pr

abs?
represent state reachability probabilities for the above three

absorbing states, which are computed by PRISM’s CTMC analysis, in iteration r.
Algorithm sketch: Main algorithm:

1. Start with a relatively large κ value (e.g., 10−4). Set iteration counter r to 0.
2. Increment round counter: r = r + 1.
3. Apply property-guided state expansion with early-path-termination and create three abstract

absorbing states as state above.
4. Perform PRISM’s CTMC analysis up to the upper time bound T in the CSL property. On

the resulting state space, we know the following state reachability probability equation holds:
Pr
absunsat

+Pr
abssat

+Pr
abs?

+Pr
X = 1, where Pr

X is the sum of probabilities of all explored states
in iteration r, excluding Pr

abssat
, Pr

absunsat
, and Pr

abs?
.
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5. Calculate Pr
abssat

, Pr
absunsat

, Pr
abs?

, and Pr
X.

6. Go to “Procedure for checking Pr
abssat

”.
Procedure for checking Pr

abssat
:

1. If CSL property is P=?(Φ U [0,T ] Ψ).

(a) Simulate the model first to get an estimated value for p. Let pu = p+ ε and pl = p− ε,
where 0 < ε� 1 and pl, pu ∈ [0, 1].

(b) Formulate prop1 = P<pu(Φ U [0,T ] Ψ) and then go to step 2: “If CSL property is
P<p(Φ U [0,T ] Ψ)”. Formulate prop2 = P>pl(Φ U [0,T ] Ψ) and then go to step 3: “If CSL
property is P>p(Φ U [0,T ] Ψ)”.

i. The case (¬prop1 ∧ ¬prop2) should not occur as long as pl 6 pu.
ii. If (prop1∧prop2), then terminate by concluding that the probability of the property

is within [p− ε, p+ ε]. So P=?(Φ U [0,T ] Ψ) = Pr
abssat

. Terminate.
iii. Else:

A. If (prop1 ∧ ¬prop2), we know that P6pl(Φ U [0,T ] Ψ). If Pr
abssat

= pl, then

P=?(Φ U [0,T ] Ψ) = Pr
abssat

. Terminate. Otherwise, P<pl(Φ U [0,T ] Ψ). Then
perform the following updates in order: p = pl − ε; pl = max{p − ε, 0}; and
pu = min{p+ ε, 1}. Go to step 1b.

B. If (¬prop1 ∧ prop2), then we know that P>pu(Φ U [0,T ] Ψ). If Pr
abssat

= pu, then

P=?(Φ U [0,T ] Ψ) = Pr
abssat

. Terminate. Otherwise, P>pu(Φ U [0,T ] Ψ). Then
perform the following updates in order: p = pu + ε; pl = max{p − ε, 0}; and
pu = min{p+ ε, 1}. Go to step 1b.

2. If CSL property is P<p(Φ U [0,T ] Ψ).
(a) If Pr

abssat
> p, then property fails. Because Pr

abssat
won’t decrease in future state expan-

sion iterations (see Theorem 0.1). Return false.
(b) Else (i.e., Pr

abssat
< p):

i. If Pr
abssat

+Pr
abs?

+Pr
X < p, then property satisfies according to Theorem 0.3. Return

true.

ii. Else (i.e., Pr
abssat

+ Pr
abs?

+ Pr
X > p): Go to “Procedure for checking Pr

absunsat
”.

3. If CSL property is P>p(Φ U [0,T ] Ψ).
(a) If Pr

abssat
> p, then property satisfies. Because Pr

abssat
won’t decrease in future iterations

(see Theorem 0.1). Return true.
(b) Else (i.e., Pr

abssat
6 p):

i. If Pr
abssat

+ Pr
abs?

+ Pr
X < p, then property fails according to Theorem 0.3. Return

false.

ii. Else (i.e., Pr
abssat

+ Pr
abs?

+ Pr
X > p): Go to “Procedure for checking Pr

absunsat
”.

Procedure for checking Pr
absunsat

:
Note that this procedure is assumed to be called within “Procedure for checking Pr

abssat
”. So it is

called only if property satisfiability cannot be determined. We use this procedure to filter out cases
that can be determined by comparing Pr

absunsat
with 1 − p, before continue to expand the state

space.
1. If CSL property is P<p(Φ U [0,T ] Ψ).

(a) If Pr
absunsat

> 1 − p, which implies Pr
abssat

< p, the property satisfies. Return true..
This is because Pr

absunsat
can not decrease in future iterations, and it is already large

enough to keep Pr
abssat

< p from after the current iteration r, Pr
abssat

< p holds for all
future iterations.

(b) Else (i.e., Pr
absunsat

6 1− p): Go to step 2 of the main algorithm.
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2. If CSL property is P>p(Φ U [0,T ] Ψ).
(a) If Pr

absunsat
6 1 − p, then Pr

abssat
+ Pr

abs?
+ Pr

X > p. Need more states to determine
property satisfiability. Go to step 2 of the main algorithm.

(b) If Pr
absunsat

> 1−p, then Pr
abssat

+Pr
abs?

+Pr
X < p, and property fails due to Theorem 0.3.

Return false.

Theorem 0.1 Let Pr
abssat

and Pr+1
abssat

be the probabilities accumulated in the abstract absorbing

state abssat after iteration r and r + 1, respectively, where r ∈ Z+. Then Pr+1
abssat

> Pr
abssat

.

Theorem 0.2 Let Pr
absunsat

and Pr+1
absunsat

be the probabilities accumulated in the abstract absorbing

state absunsat after iteration r and r + 1, respectively, where r ∈ Z+. Then Pr+1
absunsat

> Pr
absunsat

.

Correctness Argument of Theorem 0.1 and 0.2 : After further state expansion in iteration
r + 1, Pr

abssat
obtained from iteration r either remains the same or increases. Because both early-

terminated-paths redirected to abssat, denoted as ρr
sat

, and their probability contribution in this
state Pr

abssat
in iteration r remain unchanged going into the next iteration r + 1. Note that state

expansion in iteration r + 1 only expands non-early-terminated paths and keep early-terminated-
ones unchanged. Since BFS is used for state expansion, all explored states in iteration r already
have all of their outgoing transitions expanded. So during iteration r + 1, there won’t be new
outgoing transitions from any explored states obtained in iteration r. For each ρr

sat
, every explored

state on this path cannot have new outgoing transitions diverting state reachability probabilities
to other paths. Therefore, as long as CTMC analysis runs to the same upper time bound in both
iterations r and r + 1, Pr+1

abssat
≮ Pr

abssat
. Secondly, state expansion in iteration r + 1 only extends

non-early-terminated paths from r. So it is possible to create new paths leading to states on path
ρr
sat

. This may potentially increase Pr
abssat

after the CTMC analysis in iteration r + 1. Therefore,

Pr+1
abssat

> Pr
abssat

. Similar argument can be made for Theorem 0.2.

Theorem 0.3 Given Pr
abssat

+ Pr
abs?

+ Pr
X < p in iteration r, for any iteration l where (l > r),

Pl
abssat

< p.

Theorem 0.4 Given Pr
absunsat

+ Pr
abs?

+ Pr
X < p in iteration r, for any iteration l where (l > r),

Pl
absunsat

< p.

Correctness Argument of Theorem 0.3 and 0.4: Since Pr
abssat

+Pr
abs?

+Pr
X < p in the current

iteration r, the best case is where the entire probability sum (Pr
abs?

+ Pr
X) contributes to Pl

abssat
in

a future iteration (l > r). However, this sum is still insufficient to bring Pl
abssat

equal or above p.
Similar argument can be made for Theorem 0.4.
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