
SPICE 2: Subcircuits and Op Amps
ECE 3410, Utah State University

Subcircuits in SPICE
Complex circuits use hierarchy to organize the netlist into modules or subcircuits.
This is useful both for design clarity and for repeating multiple copies of the
same circuit.

To declare a subcircuit, SPICE uses this syntax:

.subckt <subckt type name> <list of I/O ports>
* devices, nodes, and connections with local scope

.ends

All declared devices and connections have local scope except for the ground
node 0. In NGSpice, the node gnd also has global scope and can be referenced
anywhere.

Instantiating a Subcircuit
After declaring a subcircuit, it can be placed in a netlist by using the X device
type:

X<name> <port list> <subcircuit type name>

Exercise 1: voltage divider subcircuit
This simple example implements a resistive voltage divider:

.subckt voltageDivider a b
R1 a b 1k
R2 b 0 2k

.ends

Notice that within the subcircuit the ports a and b are treated like node names.
This circuit should work as a voltage divider with v(b)=v(a)*R1/(R1+R2) =
v(a)/3.

1

Save these lines in a file called netlists/voltageDivider.sp

Exercise 1: instantiating the voltage divider
Now make a new file called netlists/circuit1.sp with these lines:

* circuit1: instantiate and simulate a voltage divider

.include netlists/voltageDivider.sp

V1 n1 0 DC 1V
X1 n1 n2 voltageDivider

.control
op
print all

.endc

.end

Explanation: this circuit connects node n1 to the voltage divider’s port a, and
node n2 is connected to the voltage divider’s port b. At n1 the voltage is 1V, so
at n2 we expect to see (1/3)V.

Exercise 1: run the simulation
Run the simulation using this command:

ngspice netlists/circuit1.sp | tee -a log.txt

Your output should include these lines:

No. of Data Rows : 1
n1 = 1.000000e+00
n2 = 6.666667e-01
v1#branch = -3.33333e-04

The lines report the voltages at nodes n1 and n2, and lastly the current sourced
through v1.

Subcircuits with Parameters
As with other hardware description languages, SPICE allows parametric sub-
circuits. For example, suppose we want to define a voltage divider with
adjustable resistor values. This would be much more useful than a fixed
voltage divider.

Parameters and their default settings are defined as follows:

2

.subckt voltageDivider a b PARAMS: r1=1k r2=2k
R1 a b {r1}
R2 b 0 {r2}

.ends

The parameters can be individually defined for each instance like this:

X1 n1 n2 voltageDivider PARAMS: r1=2k r2=4k

If no parameters are defined on the instance line, then the default values are
used.

Exercise 2
• Add the parameters r1 and r2 to the voltageDivider.sp subcircuit.
• Simulate circuit1.sp to verify that you get the same result.
• Copy circuit1.sp to file circuit2.sp and change the parameters so that

R1=2k and R2=8k.
• Simulate circuit2.sp and verify that you see the expected results:

No. of Data Rows : 1
n1 = 1.000000e+00
n2 = 8.000000e-01
v1#branch = -1.00000e-04

Using a Vendor Op Amp Model
Electronic device manufacturers usually provide SPICE models for their products.
For complex devices like an op amp, the models are usually given as subcircuits.

An example model for the ua741 op amp is provided in models/ua741.md
(here the file type md means “model” and not “markdown”). Open the file and
look it over. Pay special attention to the header:

*---
*
* To use a subcircuit, the name must begin with 'X'. For example:
* X1 1 2 3 4 5 uA741
*
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt uA741 1 2 3 4 5
*

3

An Inverting Summer Schematic
An inverting weighted summer schematic is shown below, followed by its SPICE
netlist. (You may need to scroll down to see the whole netlist). In the next few
slides, we will explain each part of the netlist.

−

+
nout

RFR1+
−V1

R2+
−V2

nn

0

n1

n2

Figure 1: Schematic. Node names are indicated in blue.

* Inverting Weighted Summer netlist

* Use parameters to set resistor values:
* (change these to match your experiment)
.param r1=1k
.param r2=1k
.param rf=1k

* Import the op amp subcircuit:
.include models/ua741.md

* Op amps need power supplies:
VDD ndd 0 DC 15V
VSS nss 0 DC -15V

* Next, the input voltages:
V1 n1 0 DC 1V
V2 n2 0 DC 5V

* Then the resistor network:
R1 n1 nn {r1}
R2 n2 nn {r2}

4

RF nout nn {rf}

* Finally, place the op amp:
* non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | model type
* | | | | | |
X1 0 nn ndd nss nout ua741

SPICE .param Statement
In addition to subcircuit parameters, SPICE allows top-level netlist parameters
using the .param statement:

* Use parameters to set resistor values:
* (change these to match your experiment)
.param r1=1k
.param r2=1k
.param rf=1k

Power Supplies
When we import the op amp subcircuit model, we also need to set power supplies,
since they are not built-into the model.

* Import the op amp subcircuit:
.include models/ua741.md

* Op amps need power supplies:
VDD ndd 0 DC 15V
VSS nss 0 DC -15V

* Next, the input voltages:
V1 n1 0 DC 1V
V2 n2 0 DC 5V

Using Netlist Parameters
When the resistors are placed, their values are defined by the .param statements.
We reference those parameters as follows:

5

* Then the resistor network:
R1 n1 nn {r1}
R2 n2 nn {r2}
RF nout nn {rf}

Placing the Op Amp
The op amp itself is placed using the subcircuit syntax:

* Finally, place the op amp:
* non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | model type
* | | | | | |
X1 0 nn ndd nss nout ua741

Exercise 3: Save the Weighted Summer
Make a file named netlists/summer.sp and enter the netlist explained in the
preceding slides.

Exercise 4: Weighted Summer Testbench
Make a file named tests/summer_op.sp and perform an operating point test:

* Weighted Summer operating point test

.include netlists/summer.sp

.control
op
print n1 n2 nout

.endc

Ve3rify that the results match these lines:

No. of Data Rows : 1
n1 = 1.000000e+00
n2 = 5.000000e+00
nout = -5.99976e+00

6

Exercise 5: Simulate the First Experiment
In summer.sp, change the .param statements to match the resistor values
you calculated in Pre-lab Exercise 5. Then create a testbench named
tests/exercise5.sp to perform these actions in your .control script, in this
order:

1. Operating point simulation; print voltages at n1, n1, and nout.
2. Change V2 to zero volts using the alter command, like this:

alter V2 DC 0V

3. DC sweep V1 from 0 to 5 volts in steps of 1V.
4. Print the results using print n1 n2 nout
5. Measure the gain using the deriv function. Since we are sweeping V1,

the function deriv(v(nout)) will calculate the derivative of Vout with
respect to V1:

print deriv(v(nout))

This derivative is designed to be -1V/V, so the calculations should be close to
that.

6. Generate plots of v(nout) and the error, {v(nout) - (-v(n1)-2*v(n2))}.
Save the plots as plots/dc_output.svg and plots/dc_error.svg.

Relating Simulation to Experiment
Note that these are the same procedures you will be performing in
the physical experiment, Procedures 1(A), 1(B), and 1(C).

When you conduct the physical experiment, the simulation should give you an
idea of whether your experiment is setup properly. The physical results should
roughly correspond to what you saw in the simulation.

In your lab report, you should compare simulation and measurement results. For
example, you should plot measured and simulated results for Vout together on the
same plot, and see if they differ in any specific way. You can also compare your
simulated and measured derivatives of Vout vs V1 and analyze any significant
differences.

Exercise 6: Simulate the Second Experiment
• Copy the file netlists/summer.sp to a new file named netlists/highpass_summer.sp.

• In highpass_summer.sp change the definition of V2 to a sinusoid, i.e. the
line should look like this:

V2 n2 0 SIN ({VO} {VA} {freq})

7

• Declare parameters VO=0V, VA=1V, and freq=1k

• Create an AC testbench named tests/highpass_summer_ac.sp

• Create a transient simulation testbench named tests/highpass_summer_tran.sp
to perform the experiment described in Procedure 2(A).

• The testbench details are discussed in the following slides.

Testbench with Parameters
Since our netlist uses parameters, it would be convenient to use them in the
testbench. NGSpice control scripts have a different parameter scope, so they
can’t “see” the netlist parameters unless we explicitly pass them through like
this:

.include netlists/highpass_summer.sp

* pass some parameters to control script:
.csparam freq=freq
.csparam VA=VA

Then in the control script, the parameters can be accessed in expressions. In this
example we use the freq parameter to set the timescale for transient simulation:

.control
* Calculate transient simulation settings
* (Here the csparam can be directly used
* in expressions with the "let" command)
let period={1/freq};
let tstop = 10*period;
let tstep = 0.1*period;

Use Vectors to Save Data
Procedure 2(A) requires testing several different values for V1, and several
different DC offsets for the sinusoid V2. To efficiently simulate all of those cases,
we can place the experimental settings in vectors and use a foreach loop to test
each case:

* Initialize output data vectors:
let gain = 0*unitvec(6)
let outofs= 0*unitvec(6)

In the above code, two vectors are declared: gain and outofs, which will store
measurement results for the gain and output offset, respectively. The unitvec(6)
function initializes a vector of length 6 containing all 1s. We multiply this vector
by zero to make them all 0s.

8

Next we use the compose function to specify the values for V1 and V2:

* Define experimental settings as indicated in
* Procedure 2(A)(i--iv)
* negative values need to be in parentheses
compose v1dc values 0 0 0 1 (-1) (-2)
compose v2ofs values 0 1 2 0 0 0

Use a foreach loop for multiple cases
* Use a FOREACH LOOP to run each case
foreach idx 0 1 2 3 4 5

* Grab parameters from their vectors:
set VI=v1dc[$idx]
set VO=v2ofs[$idx]

* Change the settings of sinusoidal source V2,
* and DC source V1, and repeat the simulation:
alter V1 DC $VI
alter @V2[sin] = [$VO $&VA $&freq]

* Run transient simulation
* (here the "$&" expansion is used so the
* settings are given as strings)
tran $&tstep $&tstop

Comment about set and let

There are two kinds of variables in NGSpice:

• set declares and defines a unitless numerical variable
– When used in expressions, must be referenced with a $ prefix.
– The idx loop variable is of this variety.

• let declares and defines a vector which may have physical units.
– Can be referenced directly in expressions, but needs $& prefix to

convert value to string.
– $& can convert a whole vector or array into a strings.
– $& cannot always be used with array indices like [idx], so we need

to sometimes do multiple steps of conversion.

Examples:

* These all work:
set x=12
set y=$x

9

let a=12
let b=a

set x=a
let a=$x

compose x lin=4
echo $&x

* This fails:
echo $&x[2]

* But this works:
let y=x[2]
echo $&y

Measuring and Saving the Results
To measure the gain, we use the PP (i.e. peak-to-peak) meas function to obtain
the amplitudes at the output and input. The gain is the ratio of amplitudes.
To measure the output offset voltage, we use the AVG (i.e. average) meas function.
The results are stored in the output vectors at the current index:

* Measure gain:
meas tran vopp PP v(nout) from=0 to=$&tstop;
meas tran vipp PP v(n2) from=0 to=$&tstop;

* Measure output offset:
meas tran voavg AVG v(nout) from=0 to=$&tstop;

* Save the measurements in the output data vectors:
let gain[$idx] = vopp/vipp
let outofs[$idx]= voavg

Plotting the Results
Since we are producing several cases, we will want to title the plots using the
voltage settings for each case, and we will want to save each hardcopy to a unique
filename to avoid overwriting results.

* Plot results:
let a=v1dc[$idx]
let b=v2ofs[$idx]
set fname=plots/proc2a_{$idx}.svg

10

plot v(nout) v(n2) title 'V1=$&a,V2(offset)=$&b'
hardcopy $fname v(nout) v(n2) title 'V1=$&a,V2(offset)=$&b'

Terminating the Loop and Printing Results
The foreach loop is concluded by an end statement.

The output vectors can be printed in a table using the print function as shown
below.

end * foreach

* Print the output vectors:
print v1dc v2ofs outofs gain

.endc

.end

The control script ends with .endc and the testbench ends with .end

Example Output Table
The table of output data should look something like this:

--
Index v1dc v2ofs outofs gain
--
0 0.000000e+00 0.000000e+00 1.463937e-02 1.993725e+00
1 0.000000e+00 1.000000e+00 1.463937e-02 1.993725e+00
2 0.000000e+00 2.000000e+00 1.463937e-02 1.993725e+00
3 1.000000e+00 0.000000e+00 -9.84697e-01 2.000365e+00
4 -1.00000e+00 0.000000e+00 1.013977e+00 1.996517e+00
5 -2.00000e+00 0.000000e+00 2.014064e+00 1.991924e+00

You should be able to use these results to make direct comparisons with your
physical experiments.

Exercise 7: AC Testbench
• In highpass_summer.sp change the definition of V2 to add an AC magni-

tude of 1, i.e. the line should look like this:

V2 n2 0 AC 1 SIN ({VO} {VA} {freq})

• Create an AC testbench named tests/highpass_summer_ac.sp

11

AC Testbench: Simulate and Plot
Perform an AC simulation with a logarithmic (i.e. dec) frequency sweep. Use
the mag function to obtain the gain, and the vdb function to obtain the gain in
decibels. Then plot the results versus the frequency and save plots.

ac dec 10 1k 4Meg
let gain=mag(v(nout))
let gain_dB=vdb(nout)

* Plot magnitude response:
plot gain vs frequency
plot gain_dB vs frequency

* Save plots to SVG files:
hardcopy plots/Proc2B_dB.svg gain_dB vs frequency
hardcopy plots/Proc2B.svg gain vs frequency

AC Testbench: Measure Bandwidth
Use the meas command with MAX and WHEN functions to measure the peak gain
(in dB), and the two -3dB cutoff frequencies. Then report the results to the
console.

These measurements serve as a prediction for your physical experiment.

* Measure peak gain at mid-band
meas ac max_dB MAX gain_dB

let drop3dB=max_dB-3

* Find lower and upper cutoff frequencies
meas ac f_low WHEN gain_dB=drop3dB CROSS=1
meas ac f_high WHEN gain_dB=drop3dB CROSS=2

let bw=f_high-f_low

echo "Frequency range from $&f_low to $&f_high with total bandwidth $&bw"

Exercise 8: Simulate Procedure 3
• Copy the netlists/highpass_summer.sp netlist to a new file named

netlists/two_stage_summer.sp, then modify the new file to implement
the schematic shown in Fig. 2.3 of the pre-lab.

• Copy the tests/highpass_summer_ac.sp file to a new testbench named
tests/two_stage_summer_ac.sp.

12

• Adapt the new testbench to simulate the experiment described in Procedure
3 of the lab manual. Change the SVG plot filenames so they refer to Proc3
instead of Proc2. Record the measurement results to compare with your
physical experiment.

Important Note: The low end of the AC sweep should be 1Hz, not 500Hz.
The experimental procedure should be revised both for the simulation and
the physical experiment.

Summary of Exercises
1. Subcircuit (voltage divider)
2. Parametric subcircuit (voltage divider)
3. Weighted Summer netlist
4. Weighted Summer testbench
5. Simulate Procedure 1A
6. Simulate Procedure 2A
7. Simulate Procedure 2B
8. Simulate Procedure 3

Turning in Your Work
The preferred way to turn in your work is to use git. From the Linux terminal:

git add *
git commit -a -m "Submitting SPICE 2 assignment"
git push origin master

Alternatively you can upload a ZIP file to Canvas containing all your assignment
files.

13

	Subcircuits in SPICE
	Instantiating a Subcircuit
	Exercise 1: voltage divider subcircuit
	Exercise 1: instantiating the voltage divider
	Exercise 1: run the simulation
	Subcircuits with Parameters
	Exercise 2
	Using a Vendor Op Amp Model
	An Inverting Summer Schematic
	SPICE .param Statement
	Power Supplies
	Using Netlist Parameters
	Placing the Op Amp
	Exercise 3: Save the Weighted Summer
	Exercise 4: Weighted Summer Testbench
	Exercise 5: Simulate the First Experiment
	Relating Simulation to Experiment
	Exercise 6: Simulate the Second Experiment
	Testbench with Parameters
	Use Vectors to Save Data
	Use a foreach loop for multiple cases
	Comment about set and let
	Measuring and Saving the Results
	Plotting the Results
	Terminating the Loop and Printing Results
	Example Output Table
	Exercise 7: AC Testbench
	AC Testbench: Simulate and Plot
	AC Testbench: Measure Bandwidth
	Exercise 8: Simulate Procedure 3
	Summary of Exercises
	Turning in Your Work

