
M I C R O E L E C T R O N I C S I
C O U R S E N O T E S

Spring 2020

Chris Winstead
Associate Professor

Electrical and Computer Engineering
chris.winstead@usu.edu



Copyright © 2019

published by utah state university

department of electrical and computer engineering

http://www.ece.usu.edu

Licensed for redistribution and adaptation under the Creative Commons
Attribution-ShareAlike International 4.0 License, CC-BY-SA-4.0.

http://www.ece.usu.edu
http://creativecommons.org/licenses/by-sa/4.0/


Contents

List of Netlists . . . . . . . . . . . . . . . . . . . . . . . . . 4

List of Examples . . . . . . . . . . . . . . . . . . . . . . . . 5

List of EveryCircuit Demos . . . . . . . . . . . . . . . . . 7

Introduction 11
Signal sources . . . . . . . . . . . . . . . . . . . . . . . . . 11

Ideal Amplifier Models . . . . . . . . . . . . . . . . . . . . 15

Real Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . 19

Equivalent small-signal resistance and impedance . . . . 24

Frequency Response of Amplifiers . . . . . . . . . . . . . 24

Harmonic distortion . . . . . . . . . . . . . . . . . . . . . 30

Operational Amplifier Circuits 33
Amplifiers with finite open-loop gain . . . . . . . . . . . 33

Difference amplifiers . . . . . . . . . . . . . . . . . . . . . 39

Instrumentation amplifiers . . . . . . . . . . . . . . . . . . 42

Non-Ideal Op Amp Characteristics . . . . . . . . . . . . . 44

Frequency Response of Op Amps . . . . . . . . . . . . . . 48

Slewing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Full Power Bandwidth (FPBW) . . . . . . . . . . . . . . . 54

Op Amp Integrators and Differentiators . . . . . . . . . . 55

Introduction to Diodes 61
Ideal switch model . . . . . . . . . . . . . . . . . . . . . . 61

Exponential model . . . . . . . . . . . . . . . . . . . . . . 63

Constant voltage-drop model . . . . . . . . . . . . . . . . 63

Iterative Analysis . . . . . . . . . . . . . . . . . . . . . . . 64

Linearized Model . . . . . . . . . . . . . . . . . . . . . . . 67

Diode Circuits 69
Half-Wave Rectifier . . . . . . . . . . . . . . . . . . . . . . 69

Resistor-diode regulator . . . . . . . . . . . . . . . . . . . 71

Peak rectifier . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Envelope detector . . . . . . . . . . . . . . . . . . . . . . . 73

Bridge Rectifier . . . . . . . . . . . . . . . . . . . . . . . . 75



4

Voltage Regulators . . . . . . . . . . . . . . . . . . . . . . 77

Super Diode, Precision Rectifier . . . . . . . . . . . . . . . 81

DC Restoration, Clamped Capacitor . . . . . . . . . . . . 84

Boost converter . . . . . . . . . . . . . . . . . . . . . . . . 85

Memristors 89
Axiomatic Circuit Theory . . . . . . . . . . . . . . . . . . 89

Simulating Memristors . . . . . . . . . . . . . . . . . . . . 94

Memristor Applications . . . . . . . . . . . . . . . . . . . 99

Exploring Memristor Controversies . . . . . . . . . . . . . 105

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Introduction to MOSFETs 111
Why do we need transistors? . . . . . . . . . . . . . . . . 111

Electrical Characteristics . . . . . . . . . . . . . . . . . . . 112

NMOS RTL Inverter Analysis . . . . . . . . . . . . . . . . 114

Behavior in Saturation . . . . . . . . . . . . . . . . . . . . 118

Some important DC configurations . . . . . . . . . . . . . 120

MOSFETs as Switches . . . . . . . . . . . . . . . . . . . . 123

MOSFETs as Amplifiers . . . . . . . . . . . . . . . . . . . 130

Amplifier analysis: general principles . . . . . . . . . . . 139

Common-Gate amplifier configuration . . . . . . . . . . . 140

Source Follower configuration . . . . . . . . . . . . . . . . 145

Biasing MOSFET amplifiers . . . . . . . . . . . . . . . . . 147

Frequency response of CMOS amplifiers . . . . . . . . . 153

Introduction to BJTs 159
DC passive bias configurations . . . . . . . . . . . . . . . 161

BJT small-signal characteristics . . . . . . . . . . . . . . . 163

BJT amplifiers with passive bias . . . . . . . . . . . . . . . 164



List of Netlists

1 envelope_detector.sp . . . . . . . . . . . . . . . . . . 74

2 bridge_rectifier.sp . . . . . . . . . . . . . . . . . . . . 76

3 basic_regulator.sp . . . . . . . . . . . . . . . . . . . . 79

4 superdiode.sp . . . . . . . . . . . . . . . . . . . . . . 82

5 741.sp (top lines showing port order) . . . . . . . . 83

6 dc_restorer.sp . . . . . . . . . . . . . . . . . . . . . . 85

7 boost_converter.sp . . . . . . . . . . . . . . . . . . . 86

8 DC sweep of common-source degeneration resistances138

9 AC simulation of CS configuration . . . . . . . . . . 156

10 Gain/BW tradeoff in CS configuration . . . . . . . . 157





List of Examples

1 Low-pass RC circuit . . . . . . . . . . . . . . . . . . . . . 13

2 High-pass RC circuit . . . . . . . . . . . . . . . . . . . . . 13

3 Linearization of a sensor . . . . . . . . . . . . . . . . . . . 21

4 Linearization of a thermistor model . . . . . . . . . . . . 22

5 Bias current in inverting configuration . . . . . . . . . . . 44

6 Maximum resistance due to Ibias . . . . . . . . . . . . . . 44

7 Inverting configuration with offset voltage . . . . . . . . 46

8 Closed-loop frequency response, low-gain . . . . . . . . 50

9 Closed-loop frequency response, high-gain . . . . . . . . 50

11 Max-Value Circuit . . . . . . . . . . . . . . . . . . . . . . . 62

12 Min-Value Circuit . . . . . . . . . . . . . . . . . . . . . . . 62

13 Min-value circuit with 0.7V drop model . . . . . . . . . . 63

14 Iterative analysis . . . . . . . . . . . . . . . . . . . . . . . 64

15 Iteration with linearized model . . . . . . . . . . . . . . . 68

16 Half-wave rectifier with vin < 0 . . . . . . . . . . . . . . . 69

17 Half-wave rectifier with vin = 1V . . . . . . . . . . . . . . 69

18 Four-diode voltage regulator design . . . . . . . . . . . . 77

19 Two Diode Regulator with Op Amp Buffer . . . . . . . . 80

20 Diode as a nonlinear resistor . . . . . . . . . . . . . . . . 92

21 Static CMOS logic design . . . . . . . . . . . . . . . . . . 125

22 Static CMOS XOR gate . . . . . . . . . . . . . . . . . . . . 126

23 Passive-biased CS amp with source degeneration . . . . 135

24 Common-gate configurations . . . . . . . . . . . . . . . . 142

25 Source Follower output resistance . . . . . . . . . . . . . 145

26 Current-mirror active bias . . . . . . . . . . . . . . . . . . 147

27 Output offset with current-mirror bias . . . . . . . . . . . 149

28 Voltage divider bias . . . . . . . . . . . . . . . . . . . . . . 161

29 Feedback bias . . . . . . . . . . . . . . . . . . . . . . . . . 162





List of EveryCircuit Demonstrations

2 Ideal Voltage Amplifier . . . . . . . . . . . . . . . . . . . . 15

4 Ideal Band-Pass Amplifier Model . . . . . . . . . . . . . . 29

6 Capacitive Coupling . . . . . . . . . . . . . . . . . . . . . 30

8 Inverting configuration . . . . . . . . . . . . . . . . . . . . 35

10 Non-inverting configuration . . . . . . . . . . . . . . . . . 37

12 Voltage follower configuration . . . . . . . . . . . . . . . 38

14 Difference amplifier (differential mode) . . . . . . . . . . 39

16 Non-inverting circuit with bias and offset . . . . . . . . . 46

18 Closed-loop frequency response . . . . . . . . . . . . . . 51

20 Diode connected NMOS device . . . . . . . . . . . . . . . 121

22 NMOS bias network . . . . . . . . . . . . . . . . . . . . . 122

24 NMOS RTL inverter . . . . . . . . . . . . . . . . . . . . . . 124

26 NMOS pull-up and pull-down . . . . . . . . . . . . . . . 124

28 Transmission gate track-and-hold circuit . . . . . . . . . . 129

30 NMOS Common-Source Amplifier . . . . . . . . . . . . . 131

32 PMOS Common-Source Amplifier . . . . . . . . . . . . . 132

34 CS amplifier with bypass capacitor . . . . . . . . . . . . . 138

36 Common-Gate configuration . . . . . . . . . . . . . . . . 143

38 Common-Gate bypass configuration . . . . . . . . . . . . 143

40 Two stage amp with current mirror bias . . . . . . . . . . 150

42 Two-stage amplifier with ideal feedback bias . . . . . . . 152

44 Two-stage amplifier with PMOS feedback bias . . . . . . 152

46 Common-Emitter with feedback bias . . . . . . . . . . . . 165

http://everycircuit.com/circuit/4512756296843264/ideal-voltage-amplifier
http://everycircuit.com/circuit/6094371024273408/ideal-band-pass-voltage-amplifier
http://everycircuit.com/circuit/5598196538015744/capacitive-coupling
http://everycircuit.com/circuit/6461316085055488
http://everycircuit.com/circuit/5328234623795200
http://everycircuit.com/circuit/6132349719805952
http://everycircuit.com/circuit/6430046838325248
http://everycircuit.com/circuit/5313518818033664
http://everycircuit.com/circuit/5313518818033664
http://everycircuit.com/circuit/6540231808385024/nmos-rtl-inverter
http://everycircuit.com/circuit/5010119107543040/nmos-pull-up
http://everycircuit.com/circuit/6077458041274368
http://everycircuit.com/circuit/6288164119904256
http://everycircuit.com/circuit/5354159258206208
http://everycircuit.com/circuit/5841187846488064/nmos-common-source-amplifier-with-source-degeneration-
http://everycircuit.com/circuit/4895047554695168
http://everycircuit.com/circuit/5897731493593088
http://everycircuit.com/circuit/5216596954447872
http://everycircuit.com/circuit/5079743861358592
http://everycircuit.com/circuit/4806078208933888
http://everycircuit.com/circuit/6668810910695424




Introduction

Signal sources

+−vsig

Rsig
+

−

Figure 1: Thévenin equivalent voltage signal source.

vsig Rsig

+

−

Figure 2: Norton equivalent current signal source.

Electronic circuits and systems can be loosely divided into two
classes: those that process signals, which are electrical repre-
sentations of information, and those that convey or convert
electrical power. In this course we are primarily concerned with
circuits that process signals, in the broadest possible sense. A
signal may convey physical information, e.g. an audio signal
produced from a microphone, or it may convey discrete or
digital information as part of a computational process. Regard-
less of the context, we will always view signals as electrical
information, either a current or voltage.

A transducer is a device that converts a physical signal into
an electrical one. From the circuit perspective, we usually model1

1 A model is a useful approximation of a physical
device or system. We use models to simplify our
understanding of complex electronic components.

a transducer as either a voltage source or a current source.
Every signal source has an associated internal impedance,
represented by Thévenin or Norton equivalent circuits.

Spectrum and Frequency Response

Most information-bearing signals are not constant. A signal x (t)
that changes over time can be represented as a superposition
of sinusoidal signals with various magnitudes, frequencies
and phases. The function that characterizes the magnitudes
and phases at each frequency is called the signal’s complex-
valued Fourier spectrum, written X (jω). The theory of spectral
transforms is quite sophisticated, but in this course we mostly
require a simplified version known as the steady-state. For our
purposes, we may consider the Laplace transform X(s) to be
equivalent to the Fourier spectrum, with s = jω.

On a modern digital oscilloscope, a signal’s spectrum can be
viewed by selecting a Fast Fourier Transform (FFT) display,

Figure 3: Example FFT display on an oscilloscope.

which reports the signal’s magnitude spectrum, equal to the
complex magnitude |X(jω)|. Since X(jω) is a complex function,
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the magnitude is obtained as

|X(jω)|2 = X(jω)× X∗(jω).

The magnitude spectrum is typically expressed in units of
decibels, and the complex phase ∠X(jω) is usually expressed
in degrees (0◦ to 360◦).

101 102 103 104 105
0

20

40

ω (rad/sec)

V
S
(s
)

(d
B)

Figure 4: A sinusoid has a single Fourier component
that appears as an impulse function on the spectral
representation. In this case the magnitude is 40 dB,
which corresponds to a time-domain zero-to-peak
amplitude of 200 V.

The individual sinusoidal signal components are expressed
as

va (t) = VA sin (ω0t + φ) ,

where VA is the zero-to-peak amplitude, ωs is the signal fre-
quency in radians per second, t is the time in seconds, and φ is
the phase-shift in radians.

A pure or single-tone sinusoid has a magnitude spectrum
represented by a single impulse function

VA (ω) =
1
2
VAδ (ω−ωs) .

The impulse height in decibels is 20 log10 (VA/2). So a zero-to-
peak magnitude of 1 V corresponds to −6 dB, 10 V corresponds
to 14 dB, 100 V corresponds to 34 dB, and so on. Frequency Units:

• ω = 2π f

• f is in Hz (cycles per second)

• ω is in radians per second.

• ω is “omega”, not w.

• A magnitude V in dB is 20 log10(V)

• A power P in dB is 10 log10(P).

When signals pass through electronic circuits, their magni-
tude and phase are altered. The circuit’s transfer function is the
ratio of the output spectrum to the input spectrum. If a circuit’s
input is X(s) and its output is Y(s), then the transfer function is

H(s) =
Y(s)
X(s)

.

We may interpret the transfer function in terms of frequency by
substituting s = jω. The transfer function’s magnitude response
is usually expressed in decibels as

|H (ω)| (dB) = 20 log10 |H (ω)|

= 10 log10 |H (ω)|2 .

When expressed in decibels, the magnitude reveals useful in-
formation about the circuit. When |H (ω)| = 0 dB, the output’s
amplitude is equal to the input. When |H (ω)| is positive, the
output’s amplitude is greater than the input, and the circuit is
said to have gain. When |H (ω)| is negative, the output’s ampli-
tude is less than the input, and the circuit is said to attenuate
the signal.

R

C

L

R

1
Cs

Ls

Figure 5: Passive linear components and their
equivalent Laplace-domain impedances.

For a linear circuit, the transfer function is obtained using
complex impedances for capacitors and inductors. A capacitor
with capacitance C has impedance 1/(sC), and an inductor with
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inductance L has impedance sL. Once components are replaced
by their equivalent impedances, they can be analyzed as though
they were resistors where the resistance values are polynomials
in s.

VIN(s)
R

1/sC

VOUT(s)

Figure 6: Low-pass configuration.

The low-pass configuration is like a simple voltage divider. The
impedances are Z1 = R and Z2 = 1/sC. Then

VOUT(s) = VIN(s)
(

Z2

Z1 + Z2

)
⇒ H(s) =

VOUT(s)
VIN(s)

=
1/sC

R + 1/sC

=
1

1 + sRC

The low-pass transfer function is commonly represented as

H(jω) =
1

1 + jω/ω3dB

. The magnitude response is then

|H(ω)|2 =

(
1

1 + jω/ω3dB

)(
1

1− jω/ω3dB

)
=

(
1

1 + ω2/ω2
3dB

)

At low frequencies where ω � ω3dB, the magnitude response is flat, approximately equal to one. At
higher frequencies where ω � ω3dB, the magnitude drops rapidly. At these high frequencies, since
ω/ω3dB � 1, we can make an approximation:

ω/ω3dB + 1 ≈ ω/ω3dB

⇒ |H(ω)| ≈ ω3dB/ω (high frequencies above ω3dB)

When represented in decibels, we find that

|H(ω)| ≈ 20 log10

(ω3dB
ω

)
= 20 log10 ω3dB − 20 log10 ω.

So as ω increases, the magnitude decreases by 20 dB per decade.

Example 1 (Low-pass RC circuit).
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VIN(s)
1/sC

R

VOUT(s)

Figure 7: High-pass configuration.

The high-pass configuration has impedances are Z1 = 1/sC and Z2 =

R. Then

VOUT(s) = VIN(s)
(

Z2

Z1 + Z2

)
⇒ H(s) =

VOUT(s)
VIN(s)

=
R

R + 1/sC

=
sRC

1 + sRC

The high-pass transfer function is commonly represented as

H(jω) =
jω/ω3dB

1 + jω/ω3dB

. The magnitude response is then

|H(ω)|2 =

(
jω/ω3dB

1 + jω/ω3dB

)(
−jω/ω3dB

1− jω/ω3dB

)
=

(
ω2/ω2

3dB
1 + ω2/ω2

3dB

)

At high frequencies where ω � ω3dB, the magnitude response is flat, approximately equal to one. At
lower frequencies where ω � ω3dB, the magnitude drops rapidly. Since ω/ω3dB � 1, we can make
an approximation:

ω/ω3dB + 1 ≈ 1

⇒ |H(ω)| ≈ ω/ω3dB (low frequencies below ω3dB)

When represented in decibels, we find that

|H(ω)| ≈ 20 log10

(
ω

ω3dB

)
= 20 log10 ω− 20 log10 ω3dB.

So as ω increases from very low frequencies, the magnitude increases by 20 dB per decade.

Example 2 (High-pass RC circuit).

A note on approximations: in these examples we used a
If A� B then:

A + B ≈ A

1
A

+
1
B
≈ 1

B
A

A + B
≈ 1

B
A + B

≈ B
A

and so on...

very common method of large-value approximation. We will
use this procedure many times. Suppose two quantities A and
B differ greatly in value, so that A � B. The notion of “much
greater than” is somewhat fuzzy, but in this course we will
define it as more than a 10× difference between two quantities.



introduction 15

Ideal Amplifier Models

Rin

+
−Avvin

Rout
+

−

vin

+

−

vout

Figure 8: Ideal linear voltage amplifier model at low
or mid-band frequencies.

An ideal linear amplifier is a circuit which receives an input
signal X and produces an output signal Y = AX. In other
words, the output is larger than the input by a constant multiple
A, called the gain. The input/output signals can be either
current or voltage, which introduces four possible amplifier
configurations:

Input Output Amplifier Type Gain Name and Symbol

Voltage Voltage Voltage Amplifier Gain Av

Current Current Current Amplifier Gain Ai

Voltage Current Transconductance Amplifier Transconductance Gm

Current Voltage Transresistance Amplifier Transresistance Rm

In order to use an amplifier, it has to be connected to its
signal source on the input side and its load on the output side.
This creates a coupling interaction between the amplifiers
internal resistances and the neighboring signal resistances. In
the voltage amplifier, we see a voltage-divider effect at both the
input and output interfaces:

Rin

+−Avvin

Rout
+

−

vin

+

−

vout

+−vsig

Rsig

RL

vIN = vSIG

(
Rin

Rin + Rsig

)
vOUT = AvvIN

(
RL

Rout + RL

)

Figure 9: Coupling interactions in voltage amplifiers.
Resistive voltage dividers appear at the input and
output interfaces.

As a result the complete system is described by the gain
equation in combination with the coupling divider ratios. To
describe this effect, we distinguish the open-circuit gain from
the loaded gain:

open-circuit gain: Avo ,
vOUT

vIN
= Av

loaded gain: AvL ,
vOUT

vIN
= Av

(
Rin

Rin + Rsig

)(
RL

Rout + RL

)
.

To maximize the amplifier’s gain, we want to eliminate the
coupling ratios by making them very close to one. This is Maximum gain in voltage amp: Rout � RL and

Rin � Rsig. In the limit, a truly ideal voltage amp has
Rin → ∞ and Rout → 0.

achieved when the amplifier has large input resistance and a
small output resistance.
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Exercise: Increase Rin to 10 kΩ and then 100 kΩ, and observe what happens to the amplitude of vin

compared to vsig for these values. Then do the same for RL. You should notice that the coupling
effects disappear when RL � Rout and Rin � Rsig. Verify that your observations match the value of the
loaded gain predicted by our analysis in this section.

EveryCircuit Demonstration 2 (Ideal Voltage Amplifier).

http://everycircuit.com/circuit/4512756296843264/ideal-voltage-amplifier
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Rin Aiiin Rout

ioutiin

loadvsig

Figure 10: Ideal linear current amplifier model at low
or mid-band frequencies.

The ideal linear current amplifier is very similar to the
voltage amplifier, except that we get current dividers instead of
voltage dividers at the input and output terminals. In a current
divider, the opposite resistance appears in the numerator, so the
conditions for achieving maximum are reversed.

For current amplifiers, the most ideal gain is called the short-
circuit gain Ais, since we can eliminate the coupling ratios by
setting RL to zero, hence short-circuiting the output. The gain
expressions for a current amplifier are:

short-circuit gain: Ais ,
iOUT

iIN
= Ai

loaded gain: AiL ,
iOUT

iIN
= Ai

(
Rsig

Rin + Rsig

)(
Rout

Rout + RL

)
.

Maximum gain in current amp: Rout � RL and
Rin � Rsig. In the limit, a truly ideal current amp has
Rin → 0 and Rout → ∞.

To maximize the current amplifier’s gain, we want to elimi-
nate the coupling ratios by making them very close to one. This
is achieved when the amplifier has small input resistance and
a large output resistance, the opposite of what we found for
voltage amplifiers.

Rin Aiiin Rout

ioutiin

RLisig Rsig

iIN = vSIG

(
Rsig

Rin + Rsig

)
iOUT = AiiIN

(
Rout

Rout + RL

)

Figure 11: Coupling interactions in current amplifiers.
Resistive current dividers appear at the input and
output interfaces.
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The remaining amplifier types are mixtures of voltage and
current amplifiers. The transconductance amplifier takes Transconductance amplifiers are especially important

since they are the basis of transistor device models.voltage input and delivers a current output. Then we see a
voltage divider at the input interface and a current divider at
the output interface/

Rin Gmvin Rout

+

−

vin

iout

RL

+−vsig

Rsig

vIN = vSIG

(
Rin

Rin + Rsig

)
iOUT = GmvIN

(
Rout

Rout + RL

)

Figure 12: Coupling interactions in transconductance
amplifiers. A resistive voltage divider appears at the
input interface and a current divider at the output
interface.

For the transconductance amplifier, the gain expressions are:

short-circuit gain: Gms ,
iOUT

vIN
= Gm

loaded gain: GmL ,
iOUT

vIN
= Gm

(
Rin

Rin + Rsig

)(
Rout

Rout + RL

)
.

Maximum gain in transconductance amp: Rout � RL
and Rin � Rsig. In the limit, a truly ideal transconduc-
tance amp has Rin → ∞ and Rout → ∞.

To maximize the transconductance amplifier’s gain, we want
to eliminate the coupling ratios by making them very close
to one. This is achieved when the amplifier has large input
resistance and a large output resistance.

Lastly, The transresistance amplifier takes current input and
delivers a voltage output. Then we see a current divider at the
input interface and a voltage divider at the output interface/

Rin

+−Rmiin

Rout
+

−

vout

iin

isig Rsig RL

iIN = vSIG

(
Rsig

Rin + Rsig

)
vOUT = RmiIN

(
RL

Rout + RL

)

Figure 13: Coupling interactions in transresistance
amplifiers. A resistive current divider appears at the
input interface and a voltage divider at the output
interface.

For the transresistance amplifier, the gain expressions are:

open-circuit gain: Rmo ,
vOUT

iIN
= Rm

loaded gain: RmL ,
vOUT

iIN
= Rm

(
Rsig

Rin + Rsig

)(
RL

Rout + RL

)
.

Maximum gain in transresistance amp: Rout � RL
and Rin � Rsig. In the limit, a truly ideal transconduc-
tance amp has Rin → 0 and Rout → 0.

To maximize the transresistance amplifier’s gain, we want to
eliminate the coupling ratios by making them very close to one.
This is achieved when the amplifier has small input resistance
and a small output resistance, the opposite of what we found
for transconductance amplifiers.
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Real Amplifiers

Real amplifiers are affected by nonlinear transfer characteris-
tics between the input and the output.

−10 10

−100

100

Input

Output

Ideal Linear Amplifier

Figure 14: DC transfer characteristic of an ideal
amplifier.

The ideal transfer characteristic is a straight line, extend-
ing from −∞ to +∞ with a constant slope. The gain of this
amplifier is the slope of its transfer characteristic:

Gain ,
dvOUT

dvIN
.

Real amplifiers do not exhibit such ideal behavior. A more real-
istic transfer characteristic is a curve that saturates at maximum
and minimum values of vOUT, with a non-constant slope in
between.

−15 −10 −5 5 10 15

−100

100

Input

Output

−15 −10 −5 5 10 15

−100

100

Input

Gain

Figure 15: Non-linear transfer characteristic showing
non-constant slope. The amplifier saturates when the
gain falls below 1 V/V.Since the slope varies, the gain is non-constant. This introduces

distortion into the signal being amplified. Due to this nonlinear
behavior, we are unable to use linear circuit methods to analyze
the amplifier system. As a result, analysis and design can
become very complex tasks. To simplify our understanding of
nonlinear systems, we rely on the concepts of linearization and
small-signal analysis.

A linearized model is a direct application of the first-order
Taylor series approximation. For a non-linear function f (x), the
Taylor approximation is defined around an offset x0 as

f (x) ≈ f (x0) + (x− x0)
∂ f
∂x

∣∣∣∣
x0

.

= f0 + A (x− x0)

This approximation is only valid for small variations, i.e. when
|x− x0| is small (the meaning of “small” here is fuzzy; the
variation is considered small enough if the approximation is
sufficiently accurate for our needs). The Taylor approximation
can be interpreted as zooming-in on the original function, such
that the zoomed portion is a nearly straight line:
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Figure 16: Zoomed transfer characteristic showing
approximately linear behavior for small signal
variations.Small-signal equivalent circuit models

The Taylor linearization reveals an extremely useful aspect of
linearized circuits: thanks to the principle of superposition, we
can separate the circuit’s behavior into two parts: the DC offset
or bias point x0, f0 and the small signal variation (x− x0). In
the circuit context, the transfer characteristic shows the large-
signal relationship between two signals vIN and vOUT. We
refer to these as the total instantaneous signals, i.e. the precise
physical signal value at an instant in time.

VIN

VOUT
Q Point,
Bias Point,
DC Offset

Figure 17: Offset point of a non-linear transfer
characteristic.

vOUT = VOUT + vout

DC part

Small Signal
part

Total Instantaneous
Signal

vin

vout

Figure 18: Small-signal activity overlaid on the
nonlinear transfer characteristic.

For non-linear circuits, it is often difficult to analyze the total
instantaneous signal, so we split it into a superposition of two
parts:

DC offset – the central or average value of a signal; what you
would measure on an oscilloscope as the signal’s MEAN. We
write DC offsets using all capital letters, as in VIN or VOUT.

Small-signal – the amount by which the signal varies from the
offset; what you would measure on an oscilloscope set to AC

Coupling. We write small-signal quantities in all-lowercase,
as in vin or vout.

Total instantaneous signal – the superposition of the offset and
small signal; what you would measure on an oscilloscope
set to DC coupling. We write the total instantaneous signal
using lowercase letters with uppercase subscripts, as in vIN or
vOUT.

The uppercase/lowercase notation is useful to keep track of
our separate analysis domains, but is not entirely perfect. For
example, we also use uppercase symbols to represent sinusoidal
amplitudes, which can sometimes create ambiguity. To help
distinguish these quantities, we will try and use calligraphic
font for sinusoidal amplitudes, as in VA.
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Procedure for small-signal analysis

When analyzing a linearized circuit, we often want to analyze
just the signals, without being distracted by their DC offsets.
We want to know, for example, the AC amplitude and phase
shift of signals at various points in a circuit. The principle of
superposition allows us to extract the small-signal behavior by
following these steps:

1. Solve the circuit’s DC operating point. In many cases we
may only need to find part of the DC solution in order to do
the next step.

2. Linearize the circuit by applying a Taylor approximation
centered at the DC operating point.

3. Replace any non-linear components with their linearized
equivalents.

4. Set all DC independent sources (both current and voltage)
to zero. Voltage sources become short-circuits, and current
sources become open-circuits. Note: do not modify any
time-varying or dependent sources.
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A temperature sensor provides a change of 2mV per ◦C, connected to a load of 10kΩ. The output
changes by 10mV when T is changed by 10

◦C. What is the source resistance of the sensor?

−

+

+−VS

vs

RS

0

RL vOUT

Figure 19: Linear temperature sensor model.
The DC offset VS is set to zero (i.e. shorted
out) for small-signal analysis.

The sensor model is linearized:

vs = VS +
dvS
dT

∣∣∣∣
T0

∆T

where T0 is the reference temperature and ∆T is the variation
from that temperature. To consider only the variation in vOUT,
we isolate the small signal portion:

vout =
dvS
dT

∣∣∣∣
T0

∆T

The problem statement tells us that

dvS
dT

∣∣∣∣
T0

= 2mV/◦C

It also tells us that vout = 10 mV, so we can solve for RS:

vout = vs
RL

RL + RS

= (2 mV/◦C) (10 ◦C)
RL

RL + RS

→ RS =
(2 mV/◦C) (10 ◦C) RL

vout

− RL

= 10 kΩ

−

+

vs

RS

RL vout

Figure 20: Small-signal equivalent tempera-
ture sensor model. The lower-case signals
vs and vout represent the variations in the
corresponding physical signals.

Example 3 (Linearization of a sensor).
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A thermistor is modeled by the Steinhart-Hart equation:

R = R0e−B
(

1
T0
− 1

T

)

280 290 300 310 320

0.99

1

1.01

1.02
·104

T (Kelvin)

R
(Ω

)

Actual
Linearized

Figure 21: Linearized approximation of thermistor
resistance for temperatures near 300 K

where R0 and T0 are reference measurements, T and
T0 are in Kelvin, and B is a device-specific parame-
ter. For small temperature changes (e.g. changes in a
room’s temperature), we can approximate this using a
linearized model centered around T0:

R ≈ R0 + ∆T
d

dT

(
R0e−B

(
1

T0
− 1

T

))∣∣∣∣
T=T0

= R0 + ∆T
(

R0e−B
(

1
T0
− 1

T

))
d

dT

(
−B

(
1
T0
− 1

T

))∣∣∣∣
T=T0

= R0 − ∆TR0

(
B
T2

0

)

So if T0 = 300 K , R0 = 10 kΩ and B = 50 K−1, then for
temperatures near 300 K we have

R ≈ 10 kΩ− ∆T × 5.5 Ω

So we should see a difference of about 5.5 Ω/K. To
check the accuracy of this approximation, we can compare the actual (nonlinear) equation to the
linearized result, as shown in Note that the accuracy is best for very small ∆T, and the error begins to
grow as |∆T| increases.

Example 4 (Linearization of a thermistor model).
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Equivalent small-signal resistance and impedance

In

large-signal definition: rX =
∂vX
∂iX

∣∣∣∣
DC

small-signal definition: =
vx

ix

From this definition we can define an analysis procedure for
determining a circuit’s small-signal equivalent resistance:

1. Linearize the circuit and obtain the small-signal equivalent
model.

2. Set any independent signal sources to zero.

3. Insert a test voltage source vx across the terminals of interest.

4. Solve the current ix that flows through the test source vx.

5. The equivalent resistance is rx = vx
ix

.

Note that this procedure only works for small-signal models.
Do not use the large-signal ratio vX/iX!

Frequency Response of Amplifiers

Every circuit has a frequency response. At the very least, there
is a hidden capacitance between every pair of nodes, called the
parasitic capacitance. These capacitances introduce multiple
poles and zeros into the circuit’s frequency response.

Rin

+−Avvin

Rout

Cin Cout

C f

+

−

vin

+

−

vout

+−vsig

Rsig

RL

Figure 22: An example amplifier model showing
parasitic capacitances.The general “ZPK” form of the transfer response is

H(s) = K ∏k (1− s/ωzk)

∏m
(
1− s/ωpm

) +

−

H(s) = VY(s)
VX (s)

+

−

vX vy

Zeros

Poles

Figure 23: General “black-box” model of a linearized
amplifier circuit. Zeros are roots of s in the numera-
tor and poles are roots in the denominator.

where ωzk are the zeros, indexed by k and ωpm are the poles,
indexed by m. In this course we will concern ourselves almost
exclusively with “simple” poles and zeros in the left half-plane.
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In other words, we’ll assume that all poles and zeros are real-
valued (not complex or imaginary), are all well separated (they
do not overlap in value), and are negative valued. If these
conditions are satisfied, then we can use a simplified “stick-
figure” method to produce approximate magnitude and phase
response diagrams, which are called Bode plots.



26 microelectronics

Low-pass systems

For every pole ωpm, the magnitude decreases by 20 dB per
decade at frequencies above the pole. The phase response
decreases by 90° between the frequencies 0.1ωpm and 10ωpm,
and crosses −45° at ωpm.
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Figure 24: Bode plot of a low-pass system with
transfer function H(s) = K 1

1+s/ωp0
, with a single pole

at ωp0 and no zeros, and with gain constant K = 104

corresponding to 80 dB. In this example the pole is at
100 rad/s. The phase response begins to decrease at
10 rad/s, loses 45° per decade, and the phase change
concludes at 1× 103 rad/s.
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High-pass systems

For every zero ωzk, the transfer function increases by 20 dB
per decade at frequencies above the pole. The phase response
increases by 90° between the frequencies 0.1ωpm and 10ωpm,
and crosses −45° at ωpm.

In high-pass systems, there is usually a zero at the origin.
In that case, there is no phase response associated with the
zero (it occurs at infinitely low frequency on the logarithmic
scale), and the zero must be canceled by one or more poles at
higher frequencies. On the Bode plot, the magnitude response
reaches its maximum value and becomes constant after the first
pole, ωp0. For frequencies below ωp0, the magnitude response
decreases by 20 dB per decade.
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Figure 25: Bode plot of a high-pass system with
transfer function H(s) = K s

1+s/ωp0
, which has a sin-

gle zero at the origin, and a single pole at 100 rad/s.
The gain constant is K = 104, corresponding to
80 dB. The phase response is due to the pole; the zero
contributes no phase change since it occurs at the
origin.
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Band-pass systems

Many circuit’s exhibit a mix of high-pass and low-pass char-
acteristics. We will especially see this in circuits that use ca-
pacitive coupling to separate the DC offset from an AC small
signal. In a bandpass system, the transfer function’s magnitude
is highest for middle frequencies between two pole frequencies
ωL and ωH . This zone is referred to as the circuit’s mid-band or
pass band.

A typical band-pass amplifier model is shown below. The
signal source has a DC offset voltage VSIG, which is usually
undesirable since it will be amplifier along with the signal. In
order to amplify just the signal, the offset is rejected by using
a coupling capacitor CC1 to create a high-pass response at the
input. The amplifier’s output similarly has an undesired DC
offset VOUT, which is rejected using the coupling capacitor CC2.

Rin

+−VOUT

+−Avvin

Rout

Cout

+

−

vin

+

−

vout

+−VSIG

vsig

Rsig
CC1

RL

Figure 26: Bandpass amplifier model where coupling
capacitors CC1 and CC2 are used to reject or replace
the DC offsets VSIG and VOUT.To analyze the bandpass circuit, we replace capacitors by

their Laplace domain equivalent impedances. We then have

vin = vsig

(
sCC1Rin

1 + sCC1 (Rin + Rsig)

)
vout = Avvin

(
RL

RL + Rout + sCoutRoutRL

)
= vsig Av

(
sCC1Rin

1 + sCC1 (Rin + Rsig)

)(
RL

RL + Rout + sCoutRoutRL

)
The transfer function is

H (s) =
vout

vsig

= Av

(
RL

RL + Rout

)(
sCC1Rin

(1 + sCC1 (Rin + Rsig)) (1 + sCout (RL ‖ Rout))

)
In this case there is a zero at the origin and two poles located at
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two frequencies:

ωp0 =
1

CC1 (Rin + Rsig)

ωp1 =
1

Cout (RL ‖ Rout)

Under ideal conditions, the voltage amplifier should have
very high Rout which places ωp0 at a low frequency, and it
should have a very low Rout which places ωp0 at a high fre-
quency. Since there is a zero at the origin, the magnitude rises
by 20 dB per decade for frequencies below ωp0, and then be-
comes flat between ωp0 and ωp1. For frequencies higher than
ωp1 the magnitude falls by 20 dB per decade.
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Figure 27: Bode plot of a band-pass system with a
single zero at the origin, and two poles at 100 rad/s
and 1× 106 rad/s . The gain constant is K = 104,
corresponding to 80 dB. The phase response is
due to the two poles, approaching −180° at higher
frequencies.
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This demonstration shows an implementation of the band-pass model from Figure 26. Examine this
circuit and perform both AC simulations (frequency mode) and transient simulations (time mode).
Try increasing and decreasing both CC1 and Cout by 10× (for a total of four different cases), and
observe how the pole frequencies change. Verify that the observations match the predictions from our
analysis in this section.

EveryCircuit Demonstration 4 (Ideal Band-Pass Amplifier Model).

This capacitive coupling demonstration shows how we can remove a signal’s DC offset and replace
it with a different offset. The circuit works through superposition of high-pass and low-pass signal
paths. The input AC signal has an offset of 10 V and a zero-to-peak amplitude of 1 V. At the out-
put, the original offset is rejected by the coupling capacitor. A new offset of 1 V is provided by an
independent DC voltage source, and is superimposed through the 1 kΩ resistor on the output side.

EveryCircuit Demonstration 6 (Capacitive Coupling).

Harmonic distortion

When a pure sinusoid is input to perfectly linear amplifier, the
output is expected to be a pure sinusoid, and its magnitude
spectrum should have a single impulse. Real amplifiers are not
perfectly linear though, so the output is usually not a perfect
sinusoid.
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Figure 28: Harmonic “spurs” appear at integer mul-
tiples of the fundamental frequency, and represent
distortion.

As a result, unexpected features called harmonics appear
in the output magnitude spectrum. Harmonics are spuri-
ous impulses that appear at integer multiples of the original
fundamental signal frequency. So if the input sinusoid has a
fundamental frequency component at f0, the distorted output
sinusoid has harmonic components spaced at integer multiples
fk = k f0.

Aliasing

Since the harmonic components can extend to very high fre-
quencies, they may contribute to aliasing effects in a digital
oscilliscope’s FFT display. Aliasing occurs when a signal vio-
lates the Shannon-Nyqvist Sampling Theorem, which states that
the sampling rate must be at least twice the highest frequency

http://everycircuit.com/circuit/6094371024273408/ideal-band-pass-voltage-amplifier
http://everycircuit.com/circuit/5598196538015744/capacitive-coupling


introduction 31

present in the signal. On a typical digital oscilloscope, we must
be aware of the following considerations:

• The Sec/Div knob sets the sampling rate fS.

• If the signal frequency f > fS/2, then the scope will show an
image at f − fS/2. So if you increase f beyond fS/2, the signal
peak on the FFT will appear to move backwards.

• When many high-frequency harmonics are present, their
images will overlap again and again over the FFT display,
creating an erroneous and confusing plot.

• Higher frequency harmonics can be suppressed by activating
an internal bandwidth limit on the oscilloscope’s input
channel.

• When zooming in to see more detail on the FFT display, do
not use the Sec/Div knob. Instead, look for a digital zoom
setting in the FFT menu.





Operational Amplifier Circuits

Amplifiers with finite open-loop gain −
+

vOUT

v−

v+
+

−
vid

Figure 29: An op amp has two input terminals and
one output. The input signal is differential, with
vid , v+ − v−. The output is single-ended, with
vOUT = Avid.

Operational amplifiers (op amps) are nearly ideal differential
amplifiers. This means that their output is proportional to the
difference of their inputs, and is governed by the characteristic
equation

vOUT = A
(
v+ − v−

)
,

where gain is the amplifier’s voltage gain. Since op amps are
nearly ideal, we expect them to have very high Rin and very low
Rout. Furthermore, there should be zero current passing into the
op amp’s input terminals.

Op amps are almost always used in negative feedback con-
figurations where there is some path for current to flow be-
tween the amplifier’s output and its inverting input terminal.
To analyze realistic op amp circuits with feedback, we need to
introduce some more refined notation:

G? = The desired or ideal or nominal closed-loop gain

⇒ G?
i = for an inverting configuration

⇒ G?
ni = for a non-inverting configuration

G = The actual achieved closed-loop gain.

A = The op amp’s finite open-loop gain, in volts per volt.

ε = The error coefficient

⇒ G = G?ε

Notice that the concept of “open-loop gain” is distinct from
the “open circuit gain,” but in this chapter we will consider
them to be approximately the same. The open-loop gain refers
to the amplifier’s gain without feedback, whereas the open-circuit
gain refers to the gain without a load. Since an op amp is ex-
pected to have a very low Rout, we will assume that loading
effects are negligible.
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Inverting amplifier

−
+

vOUT

R2

R1

vIN

i1

i2

v−

v+

Figure 30: Inverting op amp configuration. No
current flows into the op amp’s terminals, so i2 = i1.

Summary: This configuration’s characteristics are:

G? = −R2

R1

G = εG?

ε =
A

1 + A + R2
R1

The standard inverting configuration includes an input resistor
R1 and a feedback resistor R2. Whenever an op amp is con-
nected in a negative feedback configuration, it will exhibit a
virtual short effect that forces v− to be approximately equal to
v+. The virtual short occurs because the op amp’s open-loop
gain tends to be very large. We can prove the virtual short effect
under the most ideal condition: that the op amp’s open loop
gain is so large it effectively approaches infinity.

Proof. First suppose v− > v+. Then we expect to see a large
negative voltage at vOUT. By superposition,

v− = vIN

(
R2

R1 + R2

)
+ vOUT

(
R1

R1 + R2

)
.

But if the op amp’s gain A → ∞, then vOUT → −∞ and
consequently v− → −∞. This creates a contradiction, since
we supposed that v− > v+. On the other hand, if v− < v+,
then vOUT → ∞ and consequently v− → ∞, which is another
contradiction. The only non-contradictory scenario is if v− =

v+.

Thanks to the virtual short effect, we can say that ideally
v− = 0, so the current passing through R1 is

i1 =
vIN

R1
.

Since there is no current passing into the op amp’s input termi-
nals, the entire current i1 must pass through R2. Then i2 = i1
and vOUT = −i1R2 = −vIN (R2/R1). This result is based on The closed-loop gain is the ratio vOUT/vIN when a

negative feedback connection is present.ideal assumptions, so we can say that the ideal closed-loop
gain is

G?
i = −R2

R1
.

The ideal analysis assumes that the op amp’s open-loop gain
goes to infinity. We can perform a more realistic analysis by
accounting for the op amp’s finite open-loop gain. In this case,
the op amp has an inexact virtual short, so we should not rely
on it in our analysis. Instead, we can solve for the closed-loop
gain beginning from the op amp’s characteristic equation:
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vout = A
(
v+ − v−

)
⇒ vout = A

(
0− v−

)
⇒ v− = −vout

A

i2 = i1 =
vout − v−

R2

=
v− − vin

R1

Then we have

R1

(
vout

(
1 +

1
A

))
= R2

(
−vout

A
− vin

)
⇒ vout

(
1 +

1
A

+
R2

R1 A

)
= −R2

R1
vin

⇒ Gi =
vout

vin

=

(
−R2

R1

)(
A

A + 1 + R2/R1

)
Notice that, in this form, we can express the circuit’s actual

gain as the product of two terms:

Gi = G?
i × ε

G?
i = −R2

R1

ε =
A

A + 1 + R2/R1

The first term, G?, is the gain expected if we used an ideal op
amp. The second term, ε, is an error coefficient that quantifies
the effect of using an op amp with finite open-loop gain A.

This circuit implements an inverting configuration where the op amp’s open-loop gain is A = 10 V/V
(i.e. 20 dB). The resistor values are R1 = 1 kΩ and R1 = 2 kΩ, so we expect an ideal closed-loop gain
of G? = −2 V/V. The input signal has a zero-to-peak amplitude of 1 V, so the output amplitude
should be 2 V. Simulate this circuit and observe the output amplitude. It should be 1.54 V. To verify
that this matches the prediction from our theory, solve for ε and G using the methods described in
this section. Then, try increasing the op amp’s open-loop gain to 20 V/V and repeat your calculations
to verify that the theory holds up.

EveryCircuit Demonstration 8 (Inverting configuration).

http://everycircuit.com/circuit/6461316085055488
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Non-inverting amplifier

−
+

vOUT

R2

+− vIN

R1

i1

i2
v−

v+

Figure 31: Non-inverting amplifier configuration.
The “virtual short” effect causes the op-amp’s
input terminals to have nearly equal potentials, so
v− ≈ v+.

Summary: This configuration’s characteristics are:

G? = 1 +
R2

R1

G = εG?

ε =
A

1 + A + R2
R1

The non-inverting configuration is similar to the inverting
configuration, except the input signal is applied at v+. Under
ideal assumptions, we may appeal to the virtual short so that
v− = vIN, and i2 = i1. Then

i1 = −vIN

R1

vOUT = vIN − i1R2

= vIN + vIN
R1

R2

⇒ G?
ni = 1 +

R1

R2

To obtain the more realistic gain accounting for finite open-
loop gain, we begin from the characteristic equation as before:

vout = A
(
vin − v−

)
⇒ v− = vin −

vout

A

i2 = i1 =
vout − v−

R2

=
v−

R1

Rearranging we get:

R1
(
vout − v−

)
= R2v−

⇒ R1

(
vout − vin +

vout

A

)
= R2

(
vin −

vout

A

)
⇒ vout

(
1 +

1
A
(1 + R2/R1)

)
= vin

(
1 +

R2

R1

)
⇒ vout

(
1 +

G?
ni

A

)
= vinG?

ni

⇒ vout

(
A + G?

ni
A

)
= vinG?

ni

⇒ G =
vout

vin

= G?
ni

(
A

A + G?
ni

)
⇒ G = G?

ni

(
A

A + 1 + R2/R1

)
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Once again we may express the result in two parts, G? and ε:

G?
ni = 1 +

R2

R1

ε =
A

A + 1 + R2/R1

Gni = G?
ni × ε

Notice that the error coefficient, ε, is the same for both the
inverting and non-inverting configurations.

Generalized Result

Since the error coefficient is the same in both configurations, the
closed-loop gain can be generally expressed as

G = G? × ε

= G?

(
A

A + 1 + R2/R1

)

Make a copy of the inverting configuration circuit and modify it to implement a non-inverting config-
uration. Keep the parameters from the original exampe, R1 = 1 kΩ, R2 = 2 kΩ and A = 10 V/V, and
set the input signal amplitude to 1 V. For these parameters, calculate the expected values of G?, ε and
G. Simulate the circuit and verify that the output amplitude agrees with your calculations.

EveryCircuit Demonstration 10 (Non-inverting configuration).

http://everycircuit.com/circuit/6461316085055488
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Voltage Follower

The voltage follower represents a slightly different case, since
there are no resistors.

−
+vIN

vOUT

Figure 32: Voltage follower configuration. Due to the
“virtual short” effect, vOUT ≈ vIN.

Summary: This configuration’s characteristics are:

G? = 1

G = εG?

ε =
A

1 + A

In this configuration, we have the following device equations:

vOUT = A
(
v+ − v−

)
= A (vIN − vOUT)

⇒ G =
vOUT

vIN
=

A
A + 1

In this case, the gain can be expressed as

G?
v f = 1

εv f =
A

A + 1
Gv f = G?

v f × εv f

Make a copy of the inverting configuration circuit and modify it to implement a voltage follower
configuration. Keep the same op amp gain from the original example, A = 10 V/V, and set the input
signal amplitude to 1 V. Calculate the expected values of G?, ε and G. Simulate the circuit and verify
that the output amplitude agrees with your calculations.

EveryCircuit Demonstration 12 (Voltage follower configuration).

http://everycircuit.com/circuit/6461316085055488
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Difference amplifiers

To make an amplifier with fully-differential input, we can com-
bine inverting and non-inverting configurations. This gives us
two gains:

G?
ni = 1 +

R2

R1

G?
i = −R2

R1

−
+

R3

+ R1

−

R2

R4

vOUTvIN

Figure 33: Difference amplifier configuration for
amplifying a differential signal. Inverting and non-
inverting configurations are superimposed. The
resistor-divider R3 −−R4 is used to ensure the same
gain for the inverting and non-inverting signal paths.

To achieve proper differential operation, the inverting and
non-inverting gains must be balanced, i.e. Gni = Gi. In their
usual configurations, this is not the case. In order to balance the
inverting and non-inverting gains, we insert the voltage divider
R3, R4, so that:

G?
ni →

(
1 +

R2

R1

)(
R4

R3 + R4

)
=

R2

R1
(condition for balance)

⇒
(

R4

R3 + R4

)(
1 +

R2

R1

)
=

R2

R1

Then solving for R4/R3 we find that

R3

R3 + R4
=

(
R2

R1

)(
R1

R2 + R1

)
=

R2

R1 + R2

Then we can invert both sides:

1 +
R3

R4
= 1 +

R1

R2

⇒ R3

R4
=

R1

R2

So the resistor ratios need to be matched.



40 microelectronics

−
+

R3

R1

R2

R4

vOUT

vip
vin

vCM

This circuit implements a difference amplifier with both
differential and common-mode input circuits. In the ini-
tial setup, you should see that the two differential input
signals, vip and vin, have zero-to-peak amplitudes of 1 V
and a frequency of 1 kHz. One of the sources, vip, has a
phase of 180° in order to have opposite polarity from vin.
The common-mode signal vCM is shared by both of the
input signals, i.e. they share this signal component; it is
common to both of them. In the example design, vCM has
a small amplitude of 100 mV and a frequency of 300 Hz.
We expect the common-mode signal to be canceled out,
so it should not appear at all in the output signal. To
verify this, increase the amplitude of vCM to 5 V, so it
will be clearly visible. Notice that the output waveform
doesn’t change.

Next, modify the value of R4 by increasing it to 4 kΩ. Keep the amplitude of vCM at 5 V, and let the
simulation run for a while. You should observe that a 300 Hz fluctuation is superimposed onto the
output signal. The common-mode is no longer canceled.

EveryCircuit Demonstration 14 (Difference amplifier (differential mode)).

The importance of matching

If the inverting and non-inverting gains are imbalanced, then
the common-mode signal is not perfectly cancelled. To see this,
we now consider the actual gains Gi and Gni, which may differ
due to imprecision in actual resistor values:

vIN
+ =

1
2

v+sig + vCM

vIN
− =

1
2

v−sig + vCM

⇒ vOUT =
1
2
(Gni + Gi) vsig + (Gni − Gi) vCM

The latter part of this result is called the common-mode gain,
ACM = (Gni − Gi). The Common Mode Rejection Ratio
(CMRR) is the ratio of the effective differential gain, Ad =
1
2 (Gni + Gi), to ACM:

CMRR =
Ad

ACM

This figure is often specified in dB. Ideally it should be infinite.

http://everycircuit.com/circuit/5328234623795200
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Input resistance in the difference amplifier

One source of mismatch in the difference amplifier is that the
input resistances are unmatched between the two input legs. To
evaluate the input resistance, we apply the method described in
?? separately for each leg of the input signal.

At the inverting input, we find that the input resistance is
equal to R1, since vip = 0, so that v+ = 0 and, due to the virtual
short, v− = 0. At the non-inverting input, the equivalent resis-
tance is equal to R3 + R4. If the input signals have a significant
series resistance, we will see signal attenuation due to resistive
coupling effects, which modifies the gain. Let us assume that
both vip and vin are both connected in series with a resistance
equal to Rsig. Then this resistance is effectively added in series
with R1 and R3, so that after accounting for this loading effect
the gain becomes

G?
L =

R2

R1 + Rsig

.

In other words

G?
L = G?

(
R1

R1 + Rsig

)
.

If we repeat this analysis on the non-inverting signal path,
we will find the same ratio. Finally, accounting for finite gain
together with the loading effect:

GL = G?

(
R1

R1 + Rsig

)
ε,

where ε is now modified due to the presence of Rsig:

ε =
A

1 + A + R2
R1+Rsig

.
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Instrumentation amplifiers

−
+vi1

−
+vi2

2R1

R2

R′2

vx

vy

iy

ix

ix − iy
−
+

R3

R3 R4

R4

vout

Figure 34: Instrumentation amplifier configuration
for amplifying differential signals. Since both inputs
are connected to the op amps’ non-inverting termi-
nals, they should both have high input resistance
and matched electrical characteristics. Compared
to difference amplifiers, this configuration is less
sensitive to resistor mismatch and has improved
CMRR.

Advantages over difference amplifiers:

• Very high input resistance (Rin → ∞).

• Gain controlled by a single resistor (2R1).

• CMRR increased by the gain of the pre-amp stage.

Disadvantages:

• Needs three op amps.

• Higher power consumption.

Instrumentation amplifier AD analysis.

We have three amplifiers. The first two are non-inverting con-
figurations. Together they are described as a fully-differential
pre-amplifier. The third op amp is configured as a difference am-
plifier. The differential gain may be analyzed as a superposition
of two non-inverting configurations:

vx = vi1

(
1 +

R2

R1

)
− vi2

R2

R1

vy = vi12

(
1 +

R2

R1

)
− vi1

R2

R1

The overall gain of the pre-amplifier stage is then

AD1 =
vx − vy

vi1 − vi2

= 1 +
2R2

2R1

= 1 +
R2

R1
.

The difference amplifier contributes a gain of R4/R3, so the
total differential gain is

AD =

(
1 +

R2

R1

)(
R4

R3

)
.

Instrumentation amplifier ACM analysis.

We expect to obtain a net improvement in CMRR through
this configuration, compared to the difference amplifier. In
fact, the instrumentation amplifier achieves the following two
advantages:
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• Eliminates sensitivity to R1 in the non-inverting configura-
tions by sharing R1 between the two circuits.

• Eliminates sensitivity to mismatch in R2.

In the Common-Mode case, set vi1 = vi2 = vicm. Then, due
to the virtual short effect, the op amp’s inverting terminals are
also equal to vicm. Therefore the voltage drop across R1 is zero,
so that

ix − iy = 0

⇒ vx = vy

Note that this result does not depend on the matching be-
tween R2 and R′2. We may conclude that the pre-amplifier’s
common-mode gain is

ACM1 = 0V/V

. This would mean that the instrumentation amplifier has a
theoretically infinite CMRR. In practice, the op amps them-
selves will contribute second order imperfections (“second order”
means they contribute smaller effects than resistor mismatch),
resulting in some residual imbalance and a finite CMRR.
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Non-Ideal Op Amp Characteristics

We have already discussed finite open-loop gain, finite input
resistance and common-mode gain as non-ideal features of op
amp circuits. Now we will examine two additional features:

• Input bias current

• Offset voltage

Input Bias Current

Every op amp has a small but non-zero bias current flowing
into its input terminals; a typical value might be 10 µA, but this
can vary across a wide range for different products. The bias
current is typically a fixed current that can be modeled as a DC
current source.

In this example we analyze the effect of bias current on an inverting configuration.

−
+Ibias

Ibias

R1

vIN

R2

vOUTv−

Figure 35: Inverting configuration showing
bias-current sources.

The theorem of superposition allows us to set vin = 0 to ana-
lyze the contribution of Ibias. In this case, we see that

v− = 0 (virtual short) ⇒ vout = IbiasR2

By superposition, we can add in the contribution from vin,
resulting in

vout = vin

(
−R2

R1

)
+ R2 Ibias.

Based on this example, we can see that the effect of Ibias

is to introduce a DC offset voltage on vout. This places a
limitation on the size of R2 that can be used. Suppose, for instance, that we have

Ibias = 10µA R2 = 1MΩ VR = 5V

and the op amp’s power rails are at ±VR. In this case, the bias current induces an output offset
voltage equal to

IbiasR2 = 10V,

which is greater than the rail of the op amp. As a result, the op amp will simply saturate.

Example 5 (Bias current in inverting configuration).
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Given Ibias, an input signal vIN and a desired closed-loop gain G, how can we determine the maxi-
mum allowable value for R2? Suppose vmax is the maximum value of vIN, and vmin is the minimum
(note that vmin can be a negative voltage). Then our circuit must satisfy

IbiasR2 + Gvmin < VR ⇒ R2 <
VR + Gvmin

Ibias
.

So returning to our example where Ibias = 10 µA and VR = 5 V, and let G = −10 V/V and vmin =

−0.1 V, we find

R2 <
(5 V) + (1 V)

10 µA
= 600 kΩ.

Example 6 (Maximum resistance due to Ibias).
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Offset Voltage

Every op amp has a DC offset voltage so that its equation is

vout = A
(
v+ − v− + Vofs

)
.

When used in high-gain circuits, this offset voltage gets ampli-
fied, which may lead to erroneous signal processing in some
circuits.

Vofs is random, usually varying in the range ±10mV. Vofs can
also change slowly over time, making it difficult to zero it out
by design.

Suppose an inverting op amp configuration
has supply rails equal to +5V and −5V, and
is configured to have a closed loop gain
G = −R2/R1 = −100V/V. The input signal
is a sinusoid with peak-to-peak amplitude
45mV, and the op amp has an offset voltage
Vofs = 10mV. Draw the output waveform.

Answer: the output amplitude is 4.5V, but
since the offset voltage is also amplified,
the output will contain a DC offset equal to
1.01V, hence the output waveform is

vout = 1.01 + 4.5 sin (2π f t) .

This will result in clipping of the waveform.

−
+

+−

Vofs

R1
vin

R2

voutv−

Figure 36: Inverting configuration showing input
offset voltage source.
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Figure 37: Waveform saturation caused by unde-
sired amplification of the op amp’s input offset
voltage.

Example 7 (Inverting configuration with offset voltage).



operational amplifier circuits 47

This circuit implements models of both Ibias and VOFS in a non-inverting op amp configuration. Since
the EveryCircuit op amp model is very ideal, a slight circuit trick is used to model the bias current by
steering it into ground instead of into the op amp terminal. This trick doesn’t change anything at all
about the circuit’s behavior. The model uses typical values of 10 µA and −10 mV for the bias current
and offset voltage, respectively.

We see that the output waveform has a significant DC offset due to the bias and offset effects, and
part of the waveform is saturated. To get some experience with these effects, you can experiment
with larger and smaller values of each, and with positive and negative values of VOFS. Occasionally
the simulation will halt and complain that it can’t find a solution. Usually in these cases you can just
restart the simulation and will proceed without any problems.

Design question: how can the circuit be modified to minimize the undesirable offset and avoid
saturating the output waveform?

EveryCircuit Demonstration 16 (Non-inverting circuit with bias and offset).

http://everycircuit.com/circuit/6132349719805952
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Frequency Response of Op Amps

General-purpose op amps are said to be internally compen-
sated devices, meaning they are deliberately designed to have
a single-pole frequency response with a very low cutoff fre-
quency:

A (s) =
A0

1 + s/ωc

where

ωc = The low cutoff frequency

A0 = The DC open-loop gain, in V/V

The frequency response looks like this:
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Figure 38: Standard op amp frequency response. In
this example, ωc = 100 rad/s, ωt = 1× 106 rad/s,
and Av0 = 80 dB. In real op amp products these
parameters can vary significantly for different
products. For a given product, ωt typically shows
low part-to-part variation and is a useful figure-of-
merit.

The phase response loses 45° about the dominant pole ωc.
There are typically additional poles at frequencies above ωt,
which can cause additional phase loss just prior to ωt. The
Phase Margin (PM) measures how much phase is lost at ωt.
Specifically,

PM = 180° +∠A (jωt)

(note that ∠A (jωt) is negative).
For our (introductory) purposes, we will assume that PM =

90°.
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Unity-Gain Frequency

A typical op amp has a a very large DC open-loop gain, often
greater than 80 dB or 10 000 V/V. Then the magnitude response
can be approximated as

A (ω) =

√
A2

0
1 + ω2/ω2

c

≈ A0ωc

ω

The unity-gain frequency ωt is where the gain magnitude is
equal to unity, i.e. 1 V/V:

1 = ωc
A0

ωt

⇒ ωt = ωc A0 Note A0 is in V/V

Because of this result, the unity-gain frequency is often referred
to as the Gain-Bandwidth Product (GBP). We can also write the
transfer function in terms of ωt as follows:

A (s) =
A0

1 + sA0/ωt

Closed-Loop Frequency Response

Consider the inverting configuration using an op amp with a
one-pole response:

ACL (s) =
(
−R2

R1

)(
A (s)

A (s) + 1 + R2/R1

)
⇒ ACL (s) = G?

( A0
1+s/ωc

A0
1+s/ωc

+ 1− G?

)

⇒ ACL (s) = G?

(
A0

A0 + 1− G? + s (1− G?) /ωc

)
≈ G?

(
A0

A0 + s (1− G?) /ωc

)
since A0 � 1− G?

= G?

(
1

1 + s (1− G?) /ωt

)
We can re-write this as a single-pole transfer function with pole

ωCL = ωt/ (1− G?)

= ωt/ (1 + R2/R1) .

This result introduces the universal Gain-Bandwidth Trade-
off. By using feedback, we can convert between bandwidth and
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closed-loop gain according to an approximate one-to-one ratio.
Note that for a given op amp, all configurations have the same
unity-gain frequency. Hence we consider ωt to be the universal
parameter of an op amp’s frequency response.

The closed-loop frequency response looks like this:
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Figure 39: Closed-loop magnitude response (in
red) for an op-amp feedback configuration. The
open-loop response is also shown (in blue). For fre-
quencies greater than ωCL, the closed-loop response
approximately matches the open-loop response.

Consider the following parameters:

ωt = 10MHz

R2/R1 = 10

What are the closed-loop DC gain, the 3dB cutoff frequency, and the unity-gain frequency for these
parameters?

ACL = −10
V
V

ωt = 10MHz

ωc = 909kHz

Example 8 (Closed-loop frequency response, low-gain).
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Consider the following parameters:

ωt = 10MHz

R2/R1 = 100

What are the closed-loop DC gain, the 3dB cutoff frequency, and the unity-gain frequency for these
parameters?

ACL = −100
V
V

ωt = 10MHz

ωc = 99kHz

Notice that as the desired gain G grows to be very large, the cutoff frequency approximates to ωt/G.

Example 9 (Closed-loop frequency response, high-gain).

This circuit models an op amp with a single-pole transfer function connected in a non-inverting
configuration. Since EveryCircuit’s built-in op amp model is basically ideal, we have to insert extra
components to introduce a pole at the op amp’s output node. This is accomplished using an RC
low-pass network followed by a voltage buffer comprised of a dependent voltage source with a gain
of 1 V/V.

Perform a frequency simulation of the closed-loop system and observe the major parameters: the
DC gain ACL (in dB), the 3 dB cutoff frequency ωc, and the unity-gain frequency ωt. Next, increase
the value of R2 by 10× and then 100×, and observe how it changes ACL and ωc. Convert ACL to
V/V in order to test the predictions from the theory presented in this section. Verify that ωt remains
constant and is approximately equal to ACLωc.

EveryCircuit Demonstration 18 (Closed-loop frequency response).

http://everycircuit.com/circuit/6430046838325248
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Slewing
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Figure 40: Slew-rate distortion in an op amp circuit.

Slewing is very different from ordinary transfer-function based
behavior. Slewing can be thought of as saturation of v′out, i.e.
a second-order saturation effect. As such, it is fundamentally
non-linear and introduces harmonic distortion into the signal.

SR = max
d
dt

vout given in V/µs.

Slewing tends to turn the output signal into a triangle wave.
If the op amp’s input signal is a pure sinusoid, then we can
determine if the output will be affected by slewing:

v∗out = ACLVA sin (2π f t)

⇒ d
dt

v∗out = 2π f ACLVA cos (2π f t)

where VA is the input signal amplitude. This tells us that slew-
ing may occur if VA is large, or if the frequency f is large, or if
the closed-loop gain ACL is large. The maximum rate of signal
change must be less than the slew-rate:

2π f ACLVA ≤ SR

Slew-rate limiting Suppose an amplifier has the following characteristics:

SR = 1V/µs

ACL = 2 V/V

f = 100kHz

What is the maximum input amplitude VA which can guarantee no slewing?

VAmax =
SR

2π f ACL

= 0.796V.

Clearly the slew rate can present real limitations for a circuit.

Example 10.

Although slewing distortion occurs commonly in op amp
circuits, there is no easy way to model it in simple simulators
like EasyCircuit. To get an accurate prediction of slew-rate
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limiting, we need to use a more advanced simulator like SPICE.
This is one of the first instances where we can see the need for
sophisticated engineering software.
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Full Power Bandwidth (FPBW)

The FPBW is the maximum frequency at which an op amp
can deliver its full-swing output signal (i.e. rail-to-rail output
amplitude). If the op amp has rails at ±VR, then the maximum
output amplitude is VO = VR. Then

FPBW =
SR

2πVR

If the op amp is single-supply, then the maximum amplitude
is VR/2, so

FPBW =
SR

πVR

The circuit will process any frequency less than the FPBW
distortion-free. For higher frequencies, you may begin to see
spurious harmonics in the output spectrum.

Once the FPBW is known, the slewing limit can be predicted
as follows:

VOmax = VR
FPBW

f

Hence if you know the FPBW and the rail voltage, you can
estimate the maximum allowable amplitude at a given high
frequency.
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Op Amp Integrators and Differentiators

−
+

vn

Z2

vout

Z1

vin

Figure 41: Generalized inverting configuration with
complex impedances.

If the circuit is analyzed in the Laplace domain, we can con-
sider arbitrary impedances to behave as through they were
resistors. Then

ACL =
vout (s)
vin (s)

= −Z2 (s)
Z1 (s)

Differentiator: Z1 is a capacitor

If Z1 is a capacitor C1, and Z2 is a resistor R2, then

Z1 (s) =
1

sC1

⇒ ACL (s) = −sC1R2.

In this transfer function, −C1R2 is just a scale constant. The
signal is multiplied by s, resulting in differentiation in the
time-domain.

Integrator: Z2 is a capacitor
−
+

vn

C2

vout

R1

vin

Figure 42: Ideal Miller integrator. H(s) =(
1
s

) (
−1

R1C2

)
.

If Z2 is a capacitor C2, and Z1 is a resistor R1, then

Z2 (s) =
1

sC2

⇒ ACL (s) = −
1

sR1C2
.

In this transfer function, −1/(R1C2) is a scale constant. The
signal is multiplied by 1/s, resulting in integration in the time-
domain.

Z1 and Z2 are both capacitors
−
+

vn

C2

vout

C1

vin

Figure 43: Idealized capacitive inverting configura-
tion.

If both of the impedances are capacitors, then the behavior is
similar to an inverting configuration.

Z1 (s) =
1

sC1

Z2 (s) =
1

sC2

⇒ ACL (s) = −
C1

C2
.

In this transfer function, −C1/C2 is the amplifier’s gain. The s
terms cancel out, resulting in no integrating or differentiating
behavior.



56 microelectronics

Practical Considerations

−
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Figure 44: Practical capacitive configuration with DC
bypass resistor.

In practice, capacitors cannot simply be left floating at the
op amp terminals. Consider the circuit shown in Figure 43.
Node vn is left floating, which means there is nothing to define
its potential. It could literally be anything, which could be
disastrous.

Additionally, there is no path for the op amp’s DC bias
current to flow. To address these problems, we have some
options:

(a) Include large resistances to passively clear the charge on v−.

(b) Use ideal switches to periodically reset charge on v−.

−
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vn
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vout

C1

vin

Figure 45: Practical capacitive configuration with
switched DC bypass.

Method (b) is commonly used in integrated circuits, where
capacitors are easier to make than resistors, and switches are
made using MOSFET transistors. One of the key advantages
to the circuit in Figure 45 is that it can cancel out the op amp’s
offset voltage. When used for this purpose it is often called an
auto-zeroing circuit. We can analyze the auto-zeroing circuit
in two phases. In Phase 1, the switches are configured to short
across C2 and to connect the top plate of C1 to ground. In this
phase, the op amp is basically in a voltage-follower configura-
tion. Due to the virtual short effect, vn should be equal to VOFS,
so C1 gets charged up to a voltage equal to VOFS. Meanwhile C2

is discharged to a voltage of zero.
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+−VOFS

Phase 1

−
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vn
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vout

C1

vin

+−VOFS

Phase 2
Figure 46: The two switching phases of a capacitive
inverting configuration.

In Phase 2, the input is connected, and node vn is left float-
ing, so that no charge can be added or removed from vn. So
any charge added to the outside plate of C1 has to be balanced
by an opposite charge on the outside plate of C2. The charge
Q1 = vIN/C1 must be balanced by Q2 = vOUT/C2 = −Q1.
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Therefore

vOUT
C2

= −vIN

C1

⇒ vOUT

vIN
= −C2

C1
.

This interpretation allows us to build practical op amp configu-
rations using only capacitors. There’s a good reason for doing
this: resistors are big but capacitors are small. When making
circuits at the micro or nano scale, it is usually preferred to use
capacitors and avoid resistors whenever possible.
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Miller Integrator

When Z2 is a capacitor and Z1 is a resistor, as in Figure 42,
the circuit is called a Miller integrator. The ideal circuit from
Figure 42 suffers from a few practical difficulties:

1. What determines the Initial Condition of the integrator?
Usually we want vout = 0 at some starting time t = 0.

2. When vin = 0, we expect vout = 0 for all t > 0. However the op
amp’s systematic offset voltage creates a “ghost input” that
gets integrated, so the charge on C2 will go to ∞.

3. There is no reset mechanism to zero the charge on C2. If vin

is a sinusoid centered at 0, the offset will keep charging C2

without limit.

−
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vout

R1

vin

RF

Figure 47: Miller integrator with DC bypass resistor
RF .

To resolve these difficulties, there are two common solutions.
The first solution is to use a large passive bypass resistor RF

connected in the feedback path, as shown in Figure 47. The
bypass resistor serves to zero the DC charge on C2. If RF is
sufficiently large, then it will have minimal influence on the
frequency response above DC, however it may contribute to
offset effects due to the op amp’s bias current and offset voltage.
It will also tend to amplify any DC offset present in the input
signal. At very low frequencies, we can treat the capacitor C2

as an open-circuit, i.e. we simply remove it from the circuit.
This reveals the circuit’s DC behavior, an inverting integrator
with gain −RF/R1. Similarly at higher frequencies where
(ωC2)

−1 � RF, we can ignore the presence of RF and the circuit
should behave like an ideal integrator. −

+
vn

C2

vout

R1

vin

Figure 48: Miller integrator with switched DC
bypass.

The second solution is to use a switching reset in the feed-
back path. We use a switch which is closed periodically to
zero the charge on C2. This method has the advantage of being
insensitive to the op amp’s bias current, and is only weakly
sensitive to the input offset voltage. The main drawback is that
the switch also resets the signal integration result, so it is not
possible to integrate over a long period of time.

Frequency Analysis

The Miller Integrator introduces an interesting frequency re-
sponse. We can solve the unity-gain frequency by evaluating
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the magnitude:

ACL (jω) =
1

ωR1C2

⇒ ωt =
1

R1C2
.

We can draw the magnitude response by placing a point at ωt,
then draw backwards adding 20dB per decade at frequencies
below ωt. The response grows toward ∞ as the frequency
approaches DC.





Introduction to Diodes

vA vB

+ vD −

iD

Figure 49: Diode symbol and notation.

A diode is like a valve that lets current flow one direction
but not the other. It is a nonlinear device, which means the
traditional linear analysis techniques cannot be directly applied.
We begin with some simplified models that are useful for
building intuition about diode circuits. After that, we’ll build up
to more accurate (but difficult) models and techniques. We’ll see
that accurate simulation using SPICE (or a similar software tool)
is essential for designing nonlinear circuits.

Ideal switch model

The simplest way to understand a diode is to consider it as an
ideal switch.

• When vD > 0, the switch is closed and iD can be any positive
value.

• When vD ≤ 0, the switch is open and iD = 0.

Using the switch model, we first make a hypothesis as to
whether the diode is ON or OFF. Then, we analyze the circuit
to verify it is consistent with that hypothesis. This approach
introduces our first iterative procedure: If the circuit contains
multiple diodes, we initially assume that all diodes are OFF
and then analyze the circuit. Any diode with a forward voltage
is then turned ON. After changing the diode’s state, we must
re-analyze the circuit to see if any additional devices need to be
turned ON.
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Analysis steps:

1. Suppose both diodes are OFF. Then vC = 0. But then both
D1 and D2 have positive potentials across their terminals,
so they cannot both be off.

2. Observe that D2 has the larger forward potential across
its terminals. Based on this, suppose that D2 is ON while
D1 remains OFF. In this case, vC = vB = 7V, hence the
potential across D1 is vC − vA = −3V, which is consistent
with the hypothesis.

In this example, we find that D1 is OFF while D2 is ON.
Based on our analysis, we can generalize the result and
describe this circuit by the function

vC = max (vA, vB) .

vA

vB

D1

vC

D2

R

vA = 4V

vB = 7V

Figure 50: Diode max-value circuit.

Example 11 (Max-Value Circuit).

Analysis steps:

1. Suppose both diodes are OFF. Then vC = VDD.

2. Observe that D1 has the larger forward potential across
its terminals. Based on this, suppose that D1 is ON while
D2 remains OFF. In this case, vC = vA = 4V, hence the
potential across D2 is vB − vC = −3V, which is consistent
with the hypothesis.

In this example, we find that D2 is OFF while D1 is ON.
Based on our analysis, we can generalize the result and
describe this circuit by the function

vC = min (vA, vB) .

VDD

R

vC

D1

va

D2

vb

vA = 4V

vB = 7V

Figure 51: Diode min-value circuit.

Example 12 (Min-Value Circuit).
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Exponential model

A more accurate model of the diode is given by this expression: Diode physical device parameters:

IS = Scale current, typ. ≈ 1pA to 1nA

n = Grading coefficient, typ. ≈ 1

UT = Thermal voltage,
kBT

q
≈ 26mV at room temp.

kB = Boltzmann constant = 8.6173× 10−5eV/K

T = Temperature (K) ≈ 300K at room temp.

q = Elementary charge = 1eV/V

iD = IS

[
exp

(
vD

nUT

)
− 1
]

Notice that when vD = 0, the current is also zero. When
vD > 0, the exponential part rapidly becomes much greater than
one. When vD < 0, the exponential part rapidly becomes much
smaller than one. This splits the diode into two different modes:
called forward bias and reverse bias, respectively.

Forward bias iD ≈ IS exp
(

vD
nUT

)
.

Reverse bias iD ≈ −IS.

Constant voltage-drop model
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Figure 52: Diode transfer characteristic. The current
increases very rapidly when vD ≈ 0.7 V.

From the physical model, we can see that the iD curve becomes
very steep when vD ≥ 0.7V, so we can say this is approximately
the ON voltage of the diode. When a diode is turned ON, it
should have a nearly constant forward voltage drop equal to
0.7V.

Analysis steps:

1. Complete the analysis using the ideal switch model. We find that D1 is ON and D2 is OFF.

2. Estimate a more accurate result by adding a 0.7V forward drop to every diode that is ON, hence

vC = vA + 0.7V = 4.7V

Based on our analysis, we can generalize the result and describe this circuit by the function

vC = min (vA, vB) + 0.7V.

Important Note: If |vA − vB| < 0.7V, then this method does not yield any valid solution. In that case,
we must use the full physical model with iterative analysis to arrive at the correct solution.

Example 13 (Min-value circuit with 0.7V drop model).
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Iterative Analysis

The constant voltage drop model gives us an approximation
that is useful for back-of-the-napkin analysis. For a more precise
analysis, we must solve the voltages and currents using the
full physical model. The resulting equations do not often have
closed-form solutions, so we must apply an iterative method
based on this procedure:

1. Obtain an initial solution using the switch model.

2. Improve the solution using the constant voltage drop model.

3. Based on that solution, calculate the resulting currents that
should flow through linear elements (resistors).

4. From those currents, estimate a more exact voltage drop for
each diode.

5. Repeat steps 3 and 4 in a loop until the answers converge to
a stable answer.

Convergence: How to know when the iterations are finished

Most of the time, we do not carry out iterative analysis by
hand; we use SPICE or a similar simulator to perform these
calculations for us. “Under the hood,” SPICE performs iterative
calculations to predict a circuit’s behavior. These simulators use
two criteria to decide when iterations are complete: absolute
tolerance (abstol) and relative tolerance (reltol), defined as:

• abstol – Simulation continues until all voltages and currents
satisfy

|∆x| < abstol

• reltol – Simulation continues until all voltages and currents
satisfy ∣∣∣∣∆x

x

∣∣∣∣ < reltol

Most simulators will allow you to adjust the abstol and reltol
parameters. Smaller values result in better accuracy, but will
take more time to finish.
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vA

R

D

vB

i
i

vA = 3V

R = 1kΩ

Figure 53: Iterative solution for resistor-diode series
configuration.

In this example, the current i is described by two
equations:

i =
vA − vB

R

i = IS exp
(

vB
nVT

)
Because of the exponential term, there is no easy
solution. We may solve the circuit by iteration:

1. Using the ideal switch model, we see that D must
be ON.

2. Using the 0.7V model, we obtain an initial guess

v(0)B = 0.7V

i(0) = 1mA

3. Using the resistor equation, we obtain a new
estimate for the current:

i(1) =
3− 0.7

1kΩ
= 2.3mA

4. From the diode equation, we can obtain a new
estimate for the voltage:

v(1)D = v(0)D + nVT ln

(
i(1)

i(0)

)
= 0.72166V.

5. We repeat these analyses using the generalized
equations

i(k+1) =
vA − v(k)B

R

v(k+1)
B = v(k)B + nVT ln

(
i(k+1)

i(k)

)

By following this procedure, we obtain the following sequence of results:

k i [mA] vB [V] ∆i [mA] ∆vB [V]

0 1 0.7 - -
1 2.3 0.72166 1.3 0.02166

2 2.2783 0.72141 −0.021656 −2.5× 10−4

3 2.2786 0.72141 2.4596× 10−4 2.8067× 10−6

Notice that the changes ∆i and ∆vB become smaller with each iteration. This means that the calcula-
tions are converging onto the correct answer, where all equations find perfect agreement.

Example 14 (Iterative analysis).
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Linearized Model

Yet another way of modeling the diode is to use a linear approxi-
mation.

+

ID

−

+−VD

rd

vD

iD

+

vd

−

id

Figure 54: Linearized diode model.

Recall the definitions of small-signal notation, ID and VD are
the operating point values, id and vd are small variations, and iD

and vD are the actual physical signal values. Hence

iD = ID + id
vD = VD + vd

Looking at this circuit, it is easy to see that rd = vd/id. Since
vd and id represent small variations, we can interpret rd as the
derivative:

rd =
dvD
diD

≈
[

diD
dvD

]−1

=

[
IS

nVT
exp

(
VD
nVT

)]−1

=
nVT
ID

If we use the 0.7V model, and assume room temperature
operation with n = 1 (so nVT = 0.026V), then the values for this
model are

VD = 0.7V

ID = 1mA

rd = 26Ω

Iteration with the linearized model

Iterative analysis can be combined with small-signal analysis by
repeatedly recalculating rd. In this version, the diode’s circuit
model looks like this:

+

i(k)D

−

+− v(k)D

r(k)d

v(k+1)
D

i(k+1)
D

+

vd

−

id

Figure 55: Iterative solution of linearized model
parameters.

The analysis procedure is as follows:

1. Use the constant 0.7V model to obtain an initial guess for all
voltages and currents, and for r(0)d .

2. Using linear circuit analysis, find the solution for v(k+1)
D .

3. Using the non-linear device current equation, calculate the
current i(k+1)

D and the small-signal resistance r(k+1)
d :

i(k+1)
D = i(k)D exp

(
v(k+1)

D − v(k)D
nVT

)
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4. Repeat the calculations until the answer is sufficiently con-
verged.

Beginning from the initial conditions i(0)D = 1mA, v(0)D = 0.7V

and r(0)d = 26Ω, we may solve new values for the voltages and
currents. Those new values may then be used to improve the
calculation of rd.

The chief advantage of using small-signal iteration is that
it provides stable convergence for most circuits, whereas the
method of direct iteration can sometimes fail. This method is
mathematically equivalent to the Newton-Raphson method,
and is the most common type of algorithm used in circuit
simulators like SPICE.

For example, we may reconsider our resistor-diode circuit:

vA

R

≈

+

R
vA

i(k)

−

+−v(k)B

r(k)d

v(k+1)
B

i(k+1)

+

vd

−

id

Figure 56: Iterative solution of the resistor-diode series configuration using the linearized model.

In this example, the iterative procedure yields the following table of results:

k i [mA] vB [V] rd [Ω] id [mA] vd [V]

0 1 0.7 26 2.25504 0.032943

1 3.5504 0.73294 7.3232 −1.0705 −0.009330
2 2.4799 0.72361 10.4843 −0.1934 −0.002112
3 2.2865 0.7215 11.3713 −0.0000079 −0.00009
4 2.2786 0.72141 11.4106 0 0

Example 15 (Iteration with linearized model).
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Half-Wave Rectifier
vin

R

vout

Figure 57: Half-wave rectifier circuit.

The 1/2-wave rectifier circuit passes current only when vout >

0.7V. In this case, the diode’s forward voltage drop is close to
0.7V, regardless of the current that flows, so that vout ≈ vin − 0.7V.
When the diode is OFF, no current flows, so vout ≈ 0V. This
behavior is approximately described by the expression

vout ≈ max (0, vin − 0.7V) .

−1

0

1

Time

Vo
lt

ag
e

vin

vout (ideal)
vout (0.7V drop)

Figure 58: Behavior of the half-wave rectifier. The
ideal switch model is compared to the more accurate
constant-0.7 V drop model.

In this example, let vin = −1V and R = 1kΩ. We want to solve for vout. First, we assume the diode is
OFF and check for consistency. We find that vout = 0 and therefore the diode’s forward drop is vD =

−1V. Since vD is negative, the diode must be OFF, so vout = 0V.

Example 16 (Half-wave rectifier with vin < 0).
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vin

1mA

+ −

0.7 V26 Ω
1 kΩ

vout

Figure 59: Linearized model of half-wave rectifier.

In this case the diode is clearly ON. Using the con-
stant voltage drop approximation, we can estimate
that vout ≈ 0.3V. A more precise estimate may be
obtained using the small-signal model:

vout + 0.7V− vin

26Ω
+

vout

1kΩ
− 1mA = 0

⇒ vout

(
1

26
+

1
1kΩ

)
= 1mA +

vin − 0.7
26

Now solving for vout:

⇒ vout = (1mA) (26Ω ‖ 1kΩ) +
vin − 0.7

26
(26Ω ‖ 1kΩ)

Now notice that (26 ‖ 1000) ≈ 26 (try it). Then we can simplify the approximation:

vout ≈ 26mV + vin − 0.7V

≈ vin − 0.684V.

This provides a more accurate approximation when the resistor R is large. In the case where vout =

1V, we find that

vout ≈ 0.343V

iD ≈ 343µA

Example 17 (Half-wave rectifier with vin = 1V).
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Resistor-diode regulator

The regulator circuit is similar to the 1/2-wave rectifier, only
it interchanges the positions of the diode and resistor. In this
circuit, when vin < 0.7V, the diode is either OFF or only weakly
ON, so the current is close to zero. In that case, the voltage drop
across R is nearly zero, so vout ≈ vin. When vin > 0.7V, the diode
is clearly ON. Using the constant voltage drop model, we find
that vout ≈ 0.7V, so the waveform is “clipped” at 0.7V.

vin vout

Figure 60: Single-diode regulator circuit.
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Figure 61: Behavior of the single-diode regulator
circuit with R = 100. The results from SPICE
simulation are more accurate than hand analysis.A more accurate analysis is obtained using the linearized

diode model. By applying the node-voltage method at vout, we
find that

vout − vin

R
+

vout − 0.7V
26Ω

+ 1mA = 0

⇒ vout

(
1
R
+

1
26Ω

)
=

vin

R
+

0.7V
26Ω

⇒ vout = vin

26Ω
26Ω + R

+ 0.7V
R

R + 26Ω

vin

R

1 mA

+−0.7V

26Ω

vout

Figure 62: Linearized model of the single-diode
regulator.

As the name implies, regulators are used to produce sta-
ble DC voltages. Ideally, a regulator should produce 0.7V re-
gardless of vin (so long as vin > 0.7V). The preceding analysis
revealed a slight dependency between vin and vout:

∆vout = ∆vin

(
26Ω

R + 26Ω

)
.

In practice, the residual ∆vout signal can introduce interference
into the circuits that are interfaced with the regulator. Accord-
ing to this analysis, the regulation works best when R is large.
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Peak rectifier

The peak rectifier (or peak detector) circuit is like a rectifier
that uses a capacitor in place of the resistor. This circuit can
be interpreted as an integrating rectifier. Unlike the usual
diode circuits, the 0.7V approximation can be misleading when
applied to the peak rectifier.

vin

C

vout

This is because the capacitor integrates all of the current that
passes through it:

vout =
1
C

∫ tF

0
iD (t) dt.

When the diode is OFF, a small current still flows, and that
current is steadily accumulated by the capacitor’s integrating
behavior.

Consider the output from a SPICE simulation where C =

1nF, shown below. In this simulation, we can see that vout rises
initially to 0.263V, which is approximately vin − 0.437V. Clearly
the 0.7V model is not working.
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Peak Detector Circuit with 0.7V Input Amplitude

vin
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To understand why the 0.7V model fails, we may examine
the diode current, shown in the figure below. Although the
current never exceeds 1µA, the small pulses are sufficient to
charge C.

In each cycle of the input waveform, the peak current gets
smaller, so the output waveform marches in smaller and smaller
steps toward the peak value of the input voltage. Given enough
time, vout will eventually rise very close to the actual peak. This
effect can be used to create AC-to-DC converters.
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Figure 63: Current delivered into the capacitor in the
peak detector circuit.

Envelope detector

The peak detector circuit can also be used in a variety of ap-
plications for instrumentation and communication. In these
applications, we usually want to detect the envelope of some
waveform, which requires that vout be allow to drop when vin de-
creases. This is accomplished by adding a resistor R in parallel
with C, resulting in an envelope detector:

vin

C

vout

R

Figure 64: Envelope detector circuit.

An example SPICE simulation result is shown in the plot
below. This simulation used the following values:

C = 10µF

R = 10kΩ

f = 10Hz

In this circuit, the diode is able to rapidly charge the capaci-
tor C, which is then slowly discharged by R.
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Figure 65: Behavior of the envelope detector circuit.

When the didoe is OFF, the output waveform is described by
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the standard RC discharge equation

vout (t) = vpeak (1− exp (−RC (t− t0))) ,

where t0 is the time when the diode turns OFF.

Netlist 1: envelope_detector.sp

* envelope detector circuit

* Generic diode model:

.model diode d(Is=2.0298e-15, n=1)

* The input is a damped 10Hz sine wave that

* looks like an impulse:

Vin 1 0 SIN(0 5 10 0.25 8)

* Peak detector circuit:

D1 1 2 diode

C1 2 0 10uF

R1 2 0 10k

* Transient simulation:

.tran 1m 1.5

.end
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Bridge Rectifier

A bridge rectifier circuit, shown below, provides full-wave
rectification. Node numbers in the figure are indicated in blue,
corresponding to the example SPICE description.

D 1 D
2

D
3

D 4

load

vIN
− +

−

+

vOUT

0

2

1

3

Figure 66: Full wave bridge rectifier circuit.

Analysis:

Case 1: vIN > 0. In this case, we see that the most
positive potential appears at the anode of
D2. Based on this, we may predict that D2 is
ON while D1 is OFF. Since the most negative
potential appears at the anode of D4, we may
conclude that D4 is OFF.

Based on this reasoning, we infer that the
current flows in a zig-zag through D2, then the
load, then D3. The potential appearing across
the load is

vOUT ≈ vIN − 1.4V.

Case 2: vIN < 0. In this case the most positive potential
appears at the anode of D4, and the most nega-
tive potential appears at the cathode of D1. We
may conclude that the current flows in a zig-zag
through D4, then the load, then D1. In this case
the potential appearing across the load is

vOUT ≈ |vIN| − 1.4V.
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The bridge arrangement ensures that the polarity across the
load is always oriented right-to-left, regardless of the input
polarity.
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Bridge Rectifier Circuit with 10V Input Amplitude
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SPICE simulation example for the bridge rectifier:

Netlist 2: bridge_rectifier.sp

* bridge rectifier circuit

* Generic diode model:

.model diode d(Is=2.0298e-15, n=1)

* The input is a 120Hz sine wave:

Vin 2 1 SIN(0 10 120)

* Bridge rectifier:

D1 0 2 diode

D2 2 3 diode

D3 0 1 diode

D4 1 3 diode

* Load resistor:

Rload 3 0 1k

* Transient simulation:

.tran .1m 0.02

.end
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Voltage Regulators

We previously considered a 0.7V regulator circuit. We can
extend this concept to produce other regulated voltages by
connecting multiple diodes in series. For example, we may
connect four diodes in series to create a 2.8V regulator circuit:

VDD

R

vOUT

Figure 67: A four-diode voltage regulator.

Ripple Analysis: Line Regulation

The regulator is able to reject ripple waveforms that appear in
the supply voltage, however the rejection is not perfect. A close
inspection reveals that a small ripple is injected into vOUT:

The regulator’s quality is measured by the amount of ripple
that appears in vout. More precisely, we want to know the ratio
of output ripple amplitude to input ripple amplitude. This
quantity is called the line regulation, defined as

LR =
∆vOUT

∆VDD

To predict this, we must calculate the small-signal gain of
AC signals that are transferred from vin to vout. We previously
introduced a small-signal model that allows each diode to
be replaced by a linear approximation. Now we introduce
the concept of an AC Equivalent Circuit which we can use to
analyze the non-DC behavior.

vdd

R

rd

rd

rd

rd

vout

Figure 68: Small-signal equivalent circuit model of
the four-diode 2.8 V regulator.

Deriving the AC Equivalent Circuit

Step 1 To obtain the linear circuit approximation,
replace all non-linear devices (e.g. diodes)
with their linearized companion models, as in
previous examples.

Step 2 To obtain the AC equivalent circuit, set all
independent DC sources to zero. This means
that independent current sources are replaced
by open-circuits, and independent voltage
sources are replaced by short-circuits.

After obtaining the AC equivalent circuit, we use all-lower-
case notation to indicate the ripple waveforms vin and vdd. Using
the AC equivalent circuit, we can solve for the line regulation as
the ratio of these small signals:

LR ≈ vout

vdd

Reminder: The lower-case signal vout represents the
small ripple signal appearing in the output. The
all-upper-case notation VOUT is used to represent
the DC (average) value. The actual physical signal is
vOUT (t) = VOUT + vout (t) .
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Let

vin = 10V + (0.5V) sin (2π f t) .

Basic analysis

Find R to get an average current of 1mA, resulting in vout = 2.8V.

1mA = I =
vin − vout

R

⇒ R =
vin − vout

I
= 7.2kΩ

The behavior of this circuit is investigated using SPICE simulation. The results shown below include
a supply ripple with zero-to-peak amplitude of 0.5V at 120Hz. From SPICE simulations, we see
that the actual output voltage is 2.7863V, which is slightly less than the intended value. The ripple
amplitude is also found to be 14.158mV.
By using the small-signal model, we can obtain a reasonable estimate of vout, the small ripple wave-
form that is superimposed on the regulator’s output:

vin = (0.5V) sin (2π f t)

vout = vin

4rd
R + 4rd

= vin

(
104

7200 + 104

)
= vin (0.014239)

= (7.12mV) sin (2π f t)

Then the line regulation is

LR =
vout

vdd

=
7.12mV
500mV

= 0.014239

= 1.4239%

Example 18 (Four-diode voltage regulator design).
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Netlist 3: basic_regulator.sp

* 2.8V regulator circuit

* Generic diode model:

.model diode d(Is=2.0298e-15, n=1)

* The input is a 120Hz sine wave with a 10V offset.

* The supply ripple amplitude is 0.5V

Vin 1 0 SIN(10 0.5 120)

* Regulator circuit

* The output is at node 2

R1 1 2 300

D1 2 3 diode

D2 3 4 diode

D3 4 5 diode

D4 5 0 diode

* Transient simulation:

.tran .1m 0.02

.end
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Figure 69: Behavior of the four-diode regulator from
SPICE simulation.
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Figure 70: Zoomed view of the ripple voltage on
vOUT.

General Analysis

In general, for a diode circuit comprised on N diodes with bias
current ID, generated by an input voltage VIN and resistance R,
we can produce a regulated voltage VOUT = NVD, where VD is
the individual diode voltage associate with ID. Then the line
regulation is

LR =
NVT/ID

R + NVT/ID

=
NVT

RID + NVT

=
NVT

VDD −VOUT + NVT
.

The smaller we make this value, the better quality we will
provide on the regulator output. Things that achieve good
quality regulation include:

• A large voltage drop RID, i.e. vin should be significantly
greater than the regulated vout.

• A small number of diodes N.
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Another approach is to use two diodes at 1mA to create
a 1.4V reference, which is then multiplied using a non-
inverting op amp configuration to yield 2.8V:
For this configuration, the line regulation is:

LR = (G)
2VT

(10V− 1.4V) + 2VT

= 0.01202 (V/V) .

So it appears that this solution is slightly better, although it
may be affected by the tolerances on R1 and R2, as well as
the op amp’s input bias current and finite gain.

VDD

R

D1

D2

−
+

R1

R2

vOUT

Example 19 (Two Diode Regulator with Op Amp Buffer).

Super Diode, Precision Rectifier −
+vin

va

vout

Rload

Figure 71: Precision rectifier circuit with op amp
feedback.

This circuit operates in two modes. When the diode is forward
biased, it is a unity-gain follower. Note that in this configura-
tion vD can be very near zero, because little current is required
to regulate the op amp’s inverting terminal.

When the diode is reverse biased, the op amp is discon-
nected from the output node. Therefore it delivers no current
to the load, and vout = 0. Note that in this configuration, the
op amp’s loop is open, which will cause va to rail negative. Be-
cause of this issue, this circuit is best used with a single-sided
power supply.



82 microelectronics

−4

−2

0

2

4

Time

Vo
lt

ag
e

Superdiode With Single-Rail Supply

vin

vout

Netlist 4: superdiode.sp

* super-diode precision rectifier simulation

* Include model for 741 op amp:

.include 741.sp

* Generic diode model:

.model diode d(Is=2.0298e-15, n=1)

VIN 1 0 SIN(0 4 10)

VDD 10 0 DC 10V

* 741 instance

* Pin order: v+ v- VR+ VR- vo

X1 1 2 10 0 3 uA741

D1 3 2 diode

RL 2 0 1k

.tran 1m 0.5

.end

The superdiode netlist uses a SPICE model for the uA741 op
amp. The model is provided by the vendor, and the usage is
documented in the model file:
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Netlist 5: 741.sp (top lines showing port order)

* SPICE model for uA741 op amp

*

* To use a subcircuit, the name must begin with ’X’. For example:

* X1 1 2 3 4 5 uA741

*

* connections: non-inverting input

* | inverting input

* | | positive power supply

* | | | negative power supply

* | | | | output

* | | | | |

.subckt uA741 1 2 3 4 5
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DC Restorer Circuit with 1V Input Amplitude

vin
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Figure 73: Behavior of DC restorer (clamped capaci-
tor) circuit simulated in SPICE.

DC Restoration, Clamped Capacitor vin

C

vout

Figure 72: Clamped capacitor circuit.

In this circuit the behavior depends on the capacitor’s charge q.

vout = vin +
q
C

When the diode is forward biased, the capacitor is able to be
charged via current flowing through the diode. When the diode
is reverse biased, no current flows, so that capacitor holds its
charge.

To analyze the circuit, consider the initial condition q (t = 0) =
0, so that initially vout = vin. Suppose vin is initially zero, and in-
creases above zero. Then the diode will stay reverse biased, and
q doesn’t change.

But if vin decreases below zero, then the diode will begin to
switch on. The capacitor will accumulate charge equal to

q (t) = iDt

= IS exp
(
−vout

VT

)
t.

This current will be greater than zero as long as vout < 0.
Consequently, the capacitor will collect charge until vout = 0.
As a result of this process, the capacitor will store a voltage
equal to the minimum value of vin.

Result: vout is a shifted version of vin, such that its minimum
value is equal to zero.
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Netlist 6: dc_restorer.sp

* DC restoration circuit

* Generic diode model:

.model diode d(Is=2.0298e-15, n=1)

* The input is a 10Hz sine wave:

Vin 1 0 SIN(0 2 10)

* Peak detector circuit:

D1 0 2 diode

C1 1 2 10uF

* Transient simulation:

.tran 1m 2

.end

Boost converter
VIN

L

C

VOUT

iL

Figure 74: Idealized boost converter circuit.

Diodes are frequently used in power conversion circuits. In this
appendix we look at one important step-up DC-to-DC converter
circuit, known as the boost converter. The boost converter con-
sists of an inductor, a diode, a switch and a load capacitance, as
in the schematic shown in Figure 74.

When the switch closes, the inductor is shorted to ground,
resulting in a large current. When the switch opens, the induc-
tor’s current cannot change instantly, so the current is forced
through the diode into the capacitor. This establishes a large
potential across the capacitor.

More precisely, suppose that the switch is initially open and
the current iL is zero. Then, at time t = 0, the switch closes
abruptly. The current is then

iL (t) =
1
L

∫ t

0
VINdτ =

VIN

L
× t.

Then if the switch opens again at some time t1, the inductor will
possess a stored energy equal to

E (t1) =
1
2

LI2.

Since the current must continue flowing through the inductor,
most of this energy is transferred into the capacitor, and some
of the energy is dissipated in the diode. For our purposes, we’ll
use the ideal switch model and ignore losses in the diode, hence
we will assume all the energy is transfered to the capacitor.
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If the switch is toggled very rapidly, with period T, then the
current iL will “ripple” up and down, transferring packets of
energy in each cycle. Suppose the switch is closed for a time
DT, where D is the duty cycle of the switching clock. Then the
switch is open for a time (1− D) T. At steady state, the current
should grow and shrink by the same amount:

∆iL(on) = VIN

DT
L

∆iL(off) = − (VIN −VOUT)
(1− D) T

L

If we set the rise and fall equal to each other (as required for
steady-state operation), then we can solve for VOUT:

VOUT =
VIN

1− D

Note that this analysis only works if the switching is very fast,
so that the inductor current never drains completely to zero.
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Figure 75: Output voltage from the boost converter
when initialized at zero.

If the switching clock has a 50% duty cycle, then the circuit
acts as a voltage doubler. An example SPICE simulation follows
with VIN = 20 V and a switch frequency of 5 MHz with a duty
cycle of 62%. The expected output is VOUT = 52.6 V. The simula-
tion output, shown in Figure 75, approaches the expected limit
after about 1 ms, which corresponds to five thousand switching
cycles in this example. Note that the simulation does account for
energy lost in the diode. The main effect of diode losses is that
the circuit takes longer to approach the steady state condition.
But just like with the peak detector circuit, the diode’s loss gets
smaller in each cycle, and some energy is delivered to the capac-
itor in each cycle, so the circuit asymptotically approaches the
ideal limit.

Netlist 7: boost_converter.sp

* Boost converter simulation

* Generic diode model:

.model diode d(Is=2.0298e-15, n=1)

* switch model:

.model switch sw(Ron=5, Roff=100000, Vt=0.001, Vh=0.0001)

* The input is 10V DC

Vin 1 0 DC 20V
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* The switch control voltage is a high-frequency pulse waveform

Vswitch 4 0 PULSE(0 1 0 1n 1n 125n 200n)

* Boost converter circuit:

* Inductor:

L1 1 2 100u

* Diode, load capacitor and switch:

D1 2 3 diode

CL 3 0 10u

S1 2 0 4 0 switch

.tran 100n 1500u

.end





Memristors

+ −v (t)

Figure 76: Memristor symbol. The device acts like a
time-varying resistor, where the resistance changes in
response to

∫
v (t) dt.

The “memristor” refers to a nonlinear two-terminal device for
which the resistance changes in response to an applied voltage
or current signal, and in which the resistance stays constant for
some period of time when the signal is removed. This behavior
is described as a “memory resistor,” hence the abbreviated
name, “memristor”. A device which exhibits resistance memory
is said to be a “memristive” device or system.

Memristive devices were first observed more than a century
ago, but they lacked a general theory to understand and apply
their behavior in the context of circuit engineering. The first
general theory was articulated by Leon Chua in two papers,
written in 1971 and 1976

2. Chua’s theory began as a somewhat 2 ; and

speculative hypothesis. Interest surged in memristors after a
group from HP Labs published a paper titled “The missing
memristor found,” which showed that nano-scale resistance-
switching devices have the characteristics predicted by Chua’s
theory 3. 3

Axiomatic Circuit Theory

Memristor theory grew out of Chua’s axiomatic formulation
of nonlinear circuit theory, which accounts for conservation
laws (i.e. Kirchoff’s Voltage and Current Laws) in networks of
nonlinear devices. There are four “fundamental” quantities
which must be conserved in any circuit:

• Voltage v (KVL)

• Current i (KCL)

• Charge q (conservation of matter)

• Flux linkage φ (conservation of energy)

Among these quantities, flux linkage (we’ll call it “flux” for
short) tends to cause a lot of confusion, which has led to some
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serious debates over the interpretation of memristor theory.
We’ll briefly examine the theoretical foundations in order to
prevent any confusion later.

In a coil inductor, the flux is associated with the magnetic
field flux through the plane of a wire loop. In the general theory
of circuits, however, flux linkage is a broader concept, and does
not always have a magnetic field interpretation. In the theory of
circuits, the flux is defined strictly as the integral of voltage over
time:

φ ,
∫

v (t) dt.

This definition does not need to invoke any concept of a mag-
netic field. In fact, the theory of circuits does not reference Some recent research hints at a genuine link between

magnetic fields and memristor flux within a specific
type of resistance-switching memristor . The
correctness and applicability of this theory are not
yet established. It could help to clear some of the
confusion about flux, but such an explanation is not
strictly necessary, since the circuit theory definition
of flux stands on its own.

any electric or magnetic field quantities at all; it is concerned
strictly with the relationships between current, voltage, charge
and flux in a network of interacting components. This theory
represents physical laws that are as fundamental as electromag-
netism, and are valid irrespective of the presence of electric or
magnetic fields.

We could say that it is a sufficient theory for circuit interac-
tions, meaning it is a set of laws or axioms which suffice to
account for all of the applicable facts within a specified domain.
For example, we can state a sufficient theory of addition on the
natural numbers (0, 1, 2, . . . ) without considering the concepts of
multiplication, division, fractions, rational or irrational numbers,
prime numbers, etc. Those additional concepts have no impor-
tance to the theory of adding natural numbers. In a similar way,
the full theory of electromagnetism is mostly unnecessary for
studying circuit networks.

So what is the theory of circuits really about? The theory
treats every physical device as a black box, defined only by the
activity of v, i, q and φ on its terminals. It it assumes there are
no significant field interactions between devices or wires, and
addresses two basic questions:

1. What types of device behavior are allowed under the physi-
cal laws?

2. How do the devices interact when connected together via
wires?

The answers to these questions dictate what kinds of circuits are
possible to build, and also provide the foundation for analyzing
and simulating those circuits. In effect, this theory forms the
basis for SPICE and other circuit simulation methods.
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Constitutive Relations

In order to define the behavior of “black box” devices, we begin
with a standard format, called the constitutive relation, that
can be used to describe any passive two-terminal device. A
constitutive relation is an expression that defines a conservative
relationship between two of the fundamental quantities. The
traditional linear components are defined by familiar relations,
expressed in both their usual and differential forms

voltage
v

charge
q

flux
φ

current
i

dq
=

i d
t

dv
=

φ dt

capacitor
dq = C dv

inductor
dφ = L di

memristor
dφ = M dq

resistor
dv = R di

Figure 77: An illustration of the constitutive relation-
ships corresponding to standard components and
definitions. One relation is missing in the classical
theory: the memristor.

usual form differential form

v = R i

q = C v

φ = L i

dv = R di

dq = C dv

dφ = L di

In addition to the three standard passive elements, we may
define two more constitutive relations based on the definitions
of current and flux:

integral form differential form

q =
∫

i dt

φ =
∫

v dt

dq = i dt

dv = φ dt

This brings us to a total of five relations among the four quan- “The memristor is not an invention.
Rather it is a description of a basic
phenomenon of nature that manifests
itself in various dissipative devices,
made from different materials, internal
structures and architectures.”

– Prodromakis, Toumazou & Chua,
“Two centuries of memristors”

Nature Materials
vol. 11, 478–481 (2012)

tities, as illustrated in the diagram in Figure 77. Chua noticed
that one relation is missing: the relationship between φ and
q. All other relationship pairs are defined, so why is this one
absent? He named the hypothetical missing element the mem-
ristor and proceeded to analyze what kind of characteristics it
should have, according to the physical laws of circuit theory.

Nonlinear Devices

The memristor is an inherently nonlinear device. In order to
understand it, we first need to examine the fundamentals of
nonlinear constitutive relations. Nearly all real-world devices
exhibit some degree of nonlinearity. The format of constitutive
relations allows us to define arbitrary nonlinear behaviors
which can then be analyzed using computer simulations.

We begin with nonlinear versions of the standard elements.
Since computer simulators will typically work by analyzing
small-signal linearized models of nonlinear circuits (similar to
the methods we used to analyze diodes), nonlinear constitutive
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relations are represented in differential form:

dv = R(v, i) di non-linear resistor

dq = C(v, q) dv non-linear capacitor

dφ = L(i, φ) di non-linear inductor

Notice that in these nonlinear relations, the R, C and L values
are not constant; they functions of their electrical state. This the-
ory represents a wide generality of phenomena – for example, a
diode can be considered as a nonlinear resistor.

Consider a forward biased diode with the standard equation

i = ISev/nUT .

We can define the small-signal resistance of this diode as

R(v, i) =
[

di
dv

ISev/nUT

]−1

=
nUT

ISev/nUT

=
nUT

i

So, for small changes in the current and voltage around the neighborhood around (v, i), we can say
that the diode’s constitutive relation is

dv =
nUT

i
di.

In a transient computer simulation for a circuit containing diodes or other nonlinear devices, we
begin with an initial state using an iterative technique. Then we slowly advance time in very small
steps, each time solving for the small changes dv, di, dq and dφ at all points in the circuit. We add the
changes to the circuit’s state and repeat, until reaching the simulation’s stop time.

Example 20 (Diode as a nonlinear resistor).

Now the memristor’s constitutive relation is given by

dφ = M(φ, q) dq.

In order to understand this relation, it is helpful to translate it
into the domain of voltage and current:

dφ

dt
= M(φ, q)

dq
dt

⇒ v = M(φ, q) i.
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That looks like a resistor equation, except the resistance is a
function of φ and q. And since φ and q are defined as the time-
integral over voltage and current, respectively, we can say that
the resistance in M is a function of the entire history of v and q
applied to the memristor. This long-term memory effect is the
reason behind the name “memory resistor.”

Memristor Properties
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Figure 78: Pinched hysteresis in a memristor, driven
by a sinusoidal voltage across its terminals. In this
model, we assume resistance increases when a rising
positive voltage is applied (blue curve). As the
resistance increases, the blue curve’s slope becomes
flatter. When the positive voltage begins to decrease
(red curve), the current is lower due to the increased
resistance in this portion of the curve. When the
voltage reaches zero, the current also goes to zero.
When the applied voltage swings negative (green
curve), the resistance decreases so the curve becomes
more steep. When the applied negative voltage
rises toward zero again (black curve), the current
is stronger (more negative) due to the decreased
resistance. Once the applied voltage returns to
zero, the memristor’s resistance should return to its
original value.

Chua authored several papers exploring the possible attributes
of a memristor device. The most important features can be
deduced from the constitutive relation itself. First of all, since
the memristor behaves like a time-varying resistance, we expect
that when zero volts are applied, its current should also go
to zero, just as it would for any resistor. Second, if a positive
voltage is applied, the flux and charge should begin to change,
and we therefore expect the resistance to change over time.
Third, if a negative voltage is applied, it should reverse the
changes in the flux and charge, and so the resistance should
change in the opposite direction.

The above reasoning predicts what is known as pinched
hysteresis, which is the key attribute of any memristor device.
Pinched hysteresis is observed on a type of plot called the Lis-
sajous figure, which displays the device’s current and voltage
when being driven by a period source. For an ordinary resistor,
the Lissajous figure should be a straight line. For capacitors and
inductors, the Lissajous figure is a circle or ellipse. For a mem-
ristor, we see the “bow tie” pattern shown in Figure 78. This
pattern is not observed for any other device, and is considered
a “fingerprint” of memristance.

A second property of memristance is non-volatility: when
the applied voltage is zero, the current is also zero, therefore
the flux and charge should remain constant. In other words, the
memristor remembers its internal resistance for some period of
time when held at zero volts. This property is potentially very
useful for memory and storage applications, and is now one of
the top priorities in memristor research.
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A Real Memristor

Figure 79: Measured data of a resistance-switching
device reported by HP Research. The HP group was
the first to identify these devices as memristors.

A third property is lobe narrowing at higher frequencies.
When a high-frequency voltage signal is applied, the positive
and negative voltages appear for shorter periods of time, so the
flux does not change as much. This should squeeze the hystere-
sis curves closer together. At progressively higher frequencies,
the Lissajous pattern should converge to a single line or curve
with no hysteresis at all — like an ordinary resistor. This prop-
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erty can be useful, for example, in reconfigurable radio circuits,
where low-frequency signals can be used to “tune” the device’s
resistance, whereas radio-frequency signals will see a stable
resistance.
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Figure 80: A memristor model based on an op amp
integrator and a voltage-controlled nonlinear resistor.

A final property is that memristors are purely passive de-
vices. Unlike capacitors and inductors, a memristor does not
store any energy. The memory effect in a memristor is usually
due to a chemical or structural change, such as a migration of
molecules within a solid material. Work must be done to induce
those changes, and they cannot be reversed without additional
work from an external source.

Simulating Memristors

Memristor models are an active area of research, and there
is not yet any standard model for simulations, nor is there a
memristor device built into SPICE or other simulators. We can
nevertheless get some experience with memristive behavior by
creating behavioral models in SPICE. This is a tricky problem;
several behavioral models are available but all of them are
sensitive to simulation parameters and may crash the simulation
if conditions are not just right. Furthermore memristor models
often become invalid outside of a limited range of voltage and
frequency, so they are not necessarily general-purpose models.
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Figure 81: A stabilized and bounded memristor
model. The zener diode and offset voltage vofs are
used to constrain the maximum and minimum
resistance in the device.

One of the simplest models uses an op amp integrator to
model the flux in the memristor, as shown in Figure 80, where
the integrator’s output voltage vφ should be proportional to
the flux φ. Then, to model the changing resistance, we have to
utilize a special nonlinear dependent current source provided
by NGSpice. The syntax for a nonlinear source is

Bxxx n+ n- i={expr}

where {expr} is the mathematical expression used to define the
device’s current. We could use a simple expression like this:

i = −K v (t) vφ (t)

where K is a scale constant with units of V/Ω, and the resis-
tance is assumed to decrease with higher values of φ. The
expression is negative since the Miller integrator circuit is invert-
ing, so we have to invert the sign.

There are a couple of problems with this model: first, we
can’t allow vφ to ever be positive, since that would turn the
memristor into an impossible energy source. This problem is
fixed by inserting a diode across the terminals of C. We add an
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offset voltage source as shown in Figure 81 to compensate for
the diode’s forward drop. In addition, by using a zener diode,
the diode’s reverse breakdown voltage limits the maximum flux
in the memristor, so the memristor model should saturate at
maximum and minimum resistances. It is realistic to assume
limits on the device’s flux, since physical quantities generally
don’t extend to infinity in real devices.

A second problem is more subtle: this model can sometimes
induce numerical instability in SPICE simulations. There are
some tricks that improve stability, like inserting small-valued
resistors and capacitors around the op amp and the nonlinear
current source. These stabilizing devices appear as ro, co and
rs in Figure 81. To verify the qualitative behavior of this model,
the simulation below tests the model for a 5 V sinusoidal input
at three different frequencies. It should produce six plots rep-
resenting the Lissajous figure and the integrator state for each
case.

memristor_integrator_model.sp

* Memristor integrator model

* Generic diode model:

.model diode d(Is=2.0298e-15, n=1, BV=200)

* Memristor subcircuit model:

.subckt memristor nplus nminus

R1 nplus n2 100

C1 n2 n3a 10n ic=0

* Ideal op amp model (dependent v source):

E1 n3 nmin nmin n2 10000

* Stabilizing RC network at op amp’s output:

R2 n3a n3 1

C2 n3a nmin 10f

* Zener diode to constrain integrator bounds:

D1 n3a n2a diode

V1 n2a n2 DC -0.8V

* Nonlinear current source:

B1 nplus nmin i={-0.001*(v(n3)-v(nmin))*((v(nplus)-v(nmin)))}

* Stabilizing series resistance:

R3 nmin nminus 1

.ends
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memristor_integrator_simulation.sp

* Memristor simulation based on integrator model

.include memristor_integrator_model.sp

V1 nplus 0 SIN(0 5 100k)

X3 nplus 0 memristor

.control

* Medium-frequency simulation:

tran 10n 50u uic

plot -i(v1) vs v(nplus)

plot v(X3.n3)

wrdata integrator_mid_freq v(nplus) i(v1) v(X3.n3)

* Low-frequency simulation:

alter @V1[sin]=[ 0 5 1k ]

tran .01m .0025 uic

plot -i(v1) vs v(nplus)

plot v(X3.n3)

wrdata integrator_low_freq v(nplus) i(v1) v(X3.n3)

* High-frequency simulation:

alter @V1[sin]= [ 0 5 1MEG ]

tran 1n 5u uic

plot -i(v1) vs v(nplus)

plot v(X3.n3)

wrdata integrator_high_freq v(nplus) i(v1) v(X3.n3)

.endc

.end
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Figure 82: Davy’s arc lamp exhibits memristive
behavior, and is believed to be the first human-made
memristor device.

The simulation results are shown in Figure 84 on the follow-
ing page. In the mid-frequency case (at 100 kHz) we see the
typical pinched hysteresis that represents memristive behav-
ior. The integrator state shows that the device’s flux oscillates,
corresponding to the integral of the sinusoidal input.

For the low-frequency results (at 1 kHz), the Lissajous figure
shows “peaks” on each side of the hysteresis lobes. The peaks
represent resistance saturation in the memristor device, which
is verified by noting the saturation in the integrator state. If we
examine the behavior at even lower frequencies, the hysteresis
lobes will almost disappear, and all we will see is a curved line.
This is because the resistance saturates early in the sinusoidal
period, so the device behaves sort of like a diode, with low
resistance for positive voltages and high resistance for negative
voltages.

Figure 83: Branly’s coherer, basically a tube filled
with iron filings, is another early memristor device.
The tube’s resistance changes in the presence of
radio waves. This device was widely used in wireless
telegraph receivers from 1890 to 1920. In 1901, Bose
reported the first observation of pinched hysteresis in
a coherer device.

Lastly, in the high-frequency case (at 1 MHz), we see the pre-
dicted lobe narrowing. The integrator state shows why: the flux
amplitude is reduced at high frequencies. This phenomenon has
an easy theoretical explanation: the flux is

φ =
∫
VA sin (2π f t) dt

=

(
VA
2π f

)
cos (2π f t)

so as f increases we expect the amplitude to drop.
The model used in this example is an idealization. Real mem-

ristors can exhibit a variety of complex nonlinear behaviors,
but all of them possess the essential characteristic of pinched
hysteresis and resistor memory. Memristor theory is now under-
stood to encompass many historical and contemporary devices,
including 19th century devices like the arc lamp (Figure 82) and
coherer (Figure 83). Chua’s theory has also been expanded to
encompass modern devices like the thermistor, various point
contact devices, fluorescent tubes, among others. As a physical
theory, memristance is increasingly observed in biological and
chemical systems such as synaptic ion channels in neurons,
leaves, blood, and even slime molds 4.

4 ; and
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Figure 84: Simulation results for the integrator-based
memristor model at three different frequencies.
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Memristor Applications

Memristors are now known to have been used in many applica-
tions before there was a unified theory to describe them. One
of the earliest practical uses was in radio receivers based on the
coherer device, that exploited the memristor’s diode-like behav-
ior. The coherer was eventually replaced by simpler vacuum
tube and solid-state diodes, and for most of the past century
memristive behavior was either ignored or expressly avoided.

Anode

Cathode

Figure 85: Formation of a metal filament within the
resistance-switching memristor.

Thanks to the development of Chua’s theory, we can now
identify several important applications for memristive behavior.
Today, the most promising applications are seen in Resistive
RAM (RRAM) memories and in neuromorphic circuits, which
mimic the activity of biological neurons. Applications are also
being considered for high-speed computing, and for new types
of logic-in-memory architectures which blur the distinction
between processors and RAM.

RRAM
H

L

H

Hvs

Figure 86: Portion of an RRAM array showing the
bias conditions for a SET operation.

Researchers are currently studying new semiconductor memory
technologies that exploit the non-volatility of memristor de-
vices. These are based on a type of memristor called resistance
switching devices. Resistance-switching memristors are simple
structures, often only a few nanometers across. The device has
metal plates on the top and bottom, separated by an insulator.
The top plate contains a different metal composition from the
bottom plate, which allows metal ions to migrate into the insu-
lating material. In this section, we present a simple version of
RRAM based on resistance-switching devices. Many other types
of memristive RAM are now being researched, so this should be
viewed as an introductory example.

Thanks to the migration of metal ions, when voltage is ap-
plied in one direction, a metal filament tends to grow into the
insulator, which lowers its resistance. When the voltage is re-
versed, the filament breaks up and restores the high-resistance
state of the insulator. Due to the small dimensions of the ma-
terial, this process can occur very rapidly, so the device tends
to switch quickly between maximum and minimum resistance
levels, hence the name “resistance switching device.”

In order to read and write data from an RRAM array, we can
use a simple diode addressing scheme as shown in Figure 86.
Each memristor is connected in series with a diode. At the
nanoscale, it’s possible to make the diode “for free”, as it can be
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made from the wire connections around the memristor. Under
normal conditions, all row wires are biased at a “high” voltage
level, and all column wires are biased at a “low” voltage, so that
every diode is reverse-biased.

L

H

L

Lvs

Figure 87: Portion of an RRAM array showing the
bias conditions for a CLEAR operation.

To drive a forward voltage across the memristor (called a
SET operation), we activate one single memristor by driving
its column voltage high and its row voltage low. This forward
biases the diode in that cell only, and exposes the memristor
to non-zero forward voltage, which drives it to its maximum-
resistance state.

To drive a reverse voltage across the memristor (called a
CLEAR operation), we bias one column connection low, while
all other columns are biased high. We then drive the cell’s row
voltage to a very high level, sufficient to exceed the diode’s
reverse breakdown voltage. This exposes the memristor to a
non-zero reverse voltage and drives it to its minimum-resistance
state.

To READ the data from a cell, we apply a small forward volt-
age on the column wire. The memristor then forms a voltage
divider with the column’s series resistance, allowing us to mea-
sure the memristor’s state by sampling the divider output at vs.
A high value implies high-resistance, and a low value implies
low-resistance.

It is possible that the small voltage applied during a READ
operation could alter the resistance state within the cell. For-
tunately, many resistance-switching memristors are found to
exhibit a threshold effect, so that their resistance remains undis-
turbed as long as the applied voltage remains less than some
threshold. With that type of device, we can use a READ volt-
age less than the threshold to perform a non-destructive read:
defined as measuring the device’s state without disturbing it.

To simulate an RRAM example, we first modify our memris-
tor model by adding a threshold effect. One way to do this is
to insert diodes in series with the integrator’s input. Then the
input voltage will have to exceed the diode’s 0.7 V drop in or-
der to influence the integrator’s state. The modified memristor
model, and an RRAM demonstration, are given in the netlists
below. The demonstration considers only a single RRAM cell.

The simulation results are shown in Figure 88, which
presents three transient signal traces. The top plot shows
the column voltage (red), the row voltage (green), and the
voltage seen across the memristor (blue). During a SET oper-
ation, the memristor voltage spikes to a high value, but then
quickly curves downward as the memristor switches into a
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high-resistance state. During the CLEAR operation, the memris-
tor shows a small negative voltage at first, but then transitions
to a larger negative voltage as the device switches to a low-
resistance state.

In between the SET and CLEAR operations, a small, brief
pulse is used to READ the memristor’s state. The pulse is kept
small in order to stay below the memristor’s threshold, so that
the state will not be disturbed. This type of small pulse is often
called a sub-threshold pulse. The middle plot in Figure 88

shows a zoomed view of the READ signals. We see that the
voltage across the memristor is higher when it is in a low-
resistance state. By measuring the voltage output, we can
deduce whether the memristor is in a high or low resistance
state, hence revealing the stored value of zero or one.

The bottom plot in Figure 88 shows the integrator state
within the memristor model, representing the device’s resis-
tance state. We see that the device switches quickly between
saturated high and low levels, and is not disturbed by the sub-
threshold READ signal.
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memristor_integrator_model_with_threshold.sp

* Memristor integrator model with threshold

* Generic diode model:

.model diode d(Is=2.0298e-15, n=1, BV=200)

* Memristor subcircuit model:

.subckt memristor nplus nminus

D2 nplus nth diode

D3 nth nplus diode

R1 nth n2 100

C1 n2 n3a 10n ic=0

* Ideal op amp model (dependent v source):

E1 n3 nmin nmin n2 10000

* Stabilizing RC network at op amp’s output:

R2 n3a n3 1

C2 n3a 0 10f

* Zener diode to constrain integrator bounds:

D1 n3a n2a diode

V1 n2a n2 DC -0.8V

* Nonlinear current source:

B1 nplus nmin i={-0.0001*(v(n3)-v(nmin))*((v(nplus)-v(nmin)))}

* Stabilizing series resistance:

R3 nmin nminus 1

.ends



memristors 103

RRAM_threshold.sp

* Memristor resistive RAM demo

* Zener diode model:

.model zdiode d(Is=2.0298e-15, n=1, BV=5)

* Load the external memristor model:

.include memristor_integrator_model_with_threshold.sp

* Circuit for one RRAM cell:

R1 1 2 100

X1 2 3 memristor

D1 3 4 zdiode

* VH is the write-1 pulse

* VL is the write-0 pulse

* Vrd is the read pulse

VH 1 5 DC 0 PULSE (0 10 00u 10u 10u 400u 2400u)

VL 4 0 DC 0 PULSE (0 10 1200u 10u 10u 400u 2400u)

VRd 5 0 DC 0 PULSE (0 1 660u 10u 10u 30u 1200u)

* Simulation control commands:

.control

tran 100u 20m uic

* Plot write/read/memristor signals:

plot v(1) v(4) ’v(2)-v(3)’

* Plot model integrator state:

plot v(X1.n3)-v(X1.nmin)

* Plot read response:

plot ’(v(2)-v(3))*v(5)/3’ v(5)

wrdata RRAM_threshold_demo v(1) v(2) v(3) v(4) v(5) X1.n3 X1.nmin

.endc

.end
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Figure 88: RRAM simulation results using the
integrator model with threshold. This is only a
hypothetical model, but real RRAM circuits show
qualitatively similar behavior.
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Exploring Memristor Controversies
“A significant part of the scientific process is to vet
descriptions of new ideas or objects, and the bigger
the potential impact of a concept, the more rigorous
that scrutiny should be. However, intertwined
with this process are many human issues of desire
for recognition and priority of discovery, as well
as an often strong bias to reject anything new
without actually understanding it. There are a
lot of misconceptions about memristors floating
around that are difficult to correct with only a few
explanatory pages. Real understanding requires a
great deal of hard work, and the resources essential
to achieve that understanding already exist in the
literature.”

Since memristors are a relatively new addition to electronics
and circuit theory, there is naturally a fair amount of debate
among researchers and practitioners over how the theory
should be interpreted. Students might be interested in hear-
ing about some of this controversy. This section provides an
overview of some of the major criticisms.

While most researchers have accepted the basic science and
historical narrative presented in this chapter, there are a few crit-
ics who remain unconvinced. Criticisms appear mainly among
practitioners in private industry, writers and commenters in
popular magazines and newspapers, and online discussions.
For example, critics have been active in editorializing their
views on the Wikipedia entry for memristors. A small number
of peer-reviewed articles (less than ten) have challenged various
aspects of memristor devices and theory, compared to thou-
sands that have adopted, expanded and successfully applied the
theory. A number of very critical articles have been published in
the notorious pseudoscience server known as “vixra” (don’t be
fooled by the academic appearance of some vixra articles).

Criticisms can be divided into the following major categories:
claims of credit (i.e. who really discovered or invented it); pedan-
tic arguments (e.g. real memristors are not “ideal” enough);
philosophical disputes; and pessimism about applications.
Other arguments may be seen, including outright denial that
memristance exists, allegations of fraud, and other crankish
fringe complaints. But any worried readers can satisfy such
extreme doubts by simply purchasing a memristor array sam-
ple chip (currently $199 from Bio-Inspired Technologies) and
observing it directly.

Claims of Credit

1. Resistance-switching devices existed before Chua’s theory,
and before HP Lab’s device. They didn’t invent anything.
Since it’s now understood that memristive devices were used in
the 19th century, some critics argue that Chua’s theory “doesn’t
count” as a legitimate discovery. Critics have also questioned
the novelty of HP Lab’s discovery, since various types of thin-
film resistance-switching devices were studied going back to the
1960s. Furthermore, 1995 an Indian research group described a
device very similar to HP’s 5. 5

Some criticisms also mention older theories that resemble or

http://www.bioinspired.net/products-1.html
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overlap with Chua’s theory on memristors. A device called the
“memistor” was studied in the 60’s, and was similarly given a
name based on “memory resistance.” It is fairly common for
competing theories to emerge in science, and subtle differences
can cause one theory to prevail while another is forgotten. The
“memistor vs memristor” argument is examined and resolved in
an article by Kim and Adhikari6. 6

Answer: So why do Chua and HP deserve so much atten-
tion? The reason is that they articulated a unifying theory.
Chua’s contributions was to express nonlinear circuit theory
as a rigorous and closed mathematical system. The major
contribution from HP Labs was to link Chua’s theory with
resistance-switching devices. As a result, researchers have been
able to refine and improve on Chua’s original theory. Critics
often claim that the Indian researchers believe that resistance-
switching devices are not memristors, but their personal beliefs
are not especially relevant to the bigger scientific question.

Thanks to contributions from hundreds of other researchers,
we now know that “memristance” is a rich concept with broad
descriptive power. It covers numerous devices and behaviors
that are awkward to describe using traditional circuit concepts,
and are absent from electronic simulators like SPICE. In the
past, useful circuit techniques may have been missed due to a
simple lack of description for these behaviors.

Pedantic Arguments

2. The memristor definition has evolved over time. There
is no “ideal memristor” matching the one first proposed by
Chua in 1971. All known memristors have some differences that
disqualify them as ideal. Real memristors are a closer match to
the expanded definition of “memristive systems” developed by
Chua in 1976. Researchers now use the term “memristor” when
they really mean “memristive system.” Critics argue that you
can’t redefine a term like that.

Answer: Sure you can. This is the process of science. A
scientific theory is not like a contract or a piece of legislation;
we expect theories and definitions to evolve as they are refined
by continuing evidence and reasoning. When critics say “there “Mathematics is an experimental science,

and definitions do not come first, but
later on.”

“I do not refuse my dinner simply be-
cause I do not understand the process of
digestion.”

– Oliver Heaviside, answering criticisms of his
Laplace transform method for circuit analysis

is no real memristor,” they are simply being dishonest. If we
allowed their reasoning, we could also claim there is no real
capacitor, inductor or resistor. An ideal capacitor, for example,
should be able to store an arbitrary amount of charge, and it
should retain that charge forever if its terminals are left open.
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But a real capacitor will experience dielectric breakdown if it
stores too much charge. A real capacitor will slowly discharge
through leakage currents. Ergo, there is no such thing as a
capacitor, right?

The concept of memristance continues to evolve, and re-
searchers are not yet settled on the best meaning of “ideal”
memristor behavior. What it means to be “ideal” is ultimately
decided based on what is most useful for circuit analysis and
design. We haven’t yet figured everything out, and that’s just
fine. That’s what makes memristors interesting as a topic of
research.

Philosophical Disputes

3. Argument from radical empiricism: All genuine science
must originate from empirical observation, and mathematics is
useful only for the subordinate role of description. “Today’s scientists have substituted mathematics for

experiments, and they wander off through equation
after equation, and eventually build a structure
which has no relation to reality... The scientists of
today think deeply instead of clearly. One must be
sane to think clearly, but one can think deeply and be
quite insane.”

– Nikola Tesla, arguing against Einstein’s theory of
general relativity

Answer: As engineers, we may be tempted to embrace this
philosophy, since the final proof always appears in the real
world. But if we really thought this way, it would invalidate
most of the methods used in our profession, and in all the hard
sciences. A scientific theory is more than just a handy descrip-
tion of observations. The value of a theory lies in its predictive
utility: if a theory’s axioms correspond to confirmed physical
laws, then mathematical predictions from those laws should
hold true. Otherwise we have to reject or modify the theory. We are “Who the h— is still believing that memristors

might exist in physical reality? By now, it should
be clear that the ‘memristor’ is nothing else but a
mathematical curiosity. The above discussed findings
are exclusively related to resistance switching
materials (ReRAM).”

– “A Physicist” (online comment)

therefore obligated to accept Chua’s prediction of memristors, or
else we have to explain what’s wrong with the theory of circuits.
For a scientific skeptic, It’s not enough to just reject mathe-
matical predictions; we have to correct the underlying theory.
Memristor critics have not proposed any changes to the theory;
in effect, they are simply rejecting mathematics as a legitimate
foundation for hard science.
4. Argument from reductionism. Here there are two sub-
arguments: (A) that we cannot legitimately separate the def-
inition of flux in circuit theory from its magnetic field interpre-
tation; and (B) that we cannot study devices at the circuit level,
they can only be understood by studying the specific physics
and chemistry that apply within a real device.

Answer: Sub-argument (A) is elaborated in a peer-reviewed
article by Vongehr and Meng, published in Scientific Reports
with the title, “The Missing Memristor has Not been Found.”
This article postulates an elaborate scenario involving an alter-
nate universe where magnetic fields and inductors don’t exist,
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and imagines an alternative Chua (perhaps wearing a goatee
in this universe) who predicts, through mathematical analysis,
that there should be a missing device called an “inductor” that
relates current and flux. But since their universe doesn’t have
magnetic fields, it would be impossible to discover a “real” in-
ductor, even if they discovered some devices deemed similar,
those devices would not represent true inductors because they
would not possess true magnetic fields. “whatever devices would be discovered

without magnetism, none can be the real
EM inductor, but the latter is the grounds
on which the original real memristor
device hypothesis sits.”

This “thought experiment” aims toward concluding that
there can be no legitimate concept of “flux” except the one
associated with magnetic fields, and therefore the discovered
memristors are not “real” memristors. The authors furthermore
speculate that a “true” memristor is impossible, but offer no
concrete evidence for this conclusion, other than to speculate
that we may be living the wrong universe.

Sub-argument (B) is a more generalized attack, but similar
in spirit to Vongehr and Meng’s alternate universe theory.
Proponents of this criticism argue that it’s meaningless to
define devices at the circuit level, because (i) circuit theory was
developed to study networks of already-existing devices, (ii)
we can’t produce a successful device unless we understand the
detailed physics internal to that device, and (iii) the original
theoretical conception of the memristor gave no indication as to
how such a device could be realized.

generic Schottky

Zener Tunnel

Photodiode LED

Varactor Tube

Figure 89: Many types of diodes, with distinct inter-
nal physics. All are classified by a single unifying
concept.

To answer these arguments, we must first observe the value
of circuit theory as an independent and complementary disci-
pline from device physics. Circuit theory is not about making
devices, it is about making complex systems. A device is only
useful to the extent that it can exist in an electronic system, so
the theory of circuits is not somehow subordinate to device
physics. As mentioned in the beginning of this chapter, circuit
theory rests directly on physical laws; it is not “derived from”
Maxwell’s electromagnetic theory. It is more correct to say that
circuit theory is the subset of electromagnetic theory that is
indifferent to fields in space. In the context of circuit theory, we
define devices by what they do at their terminals, not how they are
made or how they work internally.

A perfect example is the diode. Historically, the name
“diode” referred to a vacuum tube device that worked on the
basis of thermionic emission from a heated metal plate, facili-
tating directional conduction between two electrodes. The term
was purportedly coined by William Eccles in 1919 as a port-
manteau of “di” (two) with “electrode.” The same name was
soon used to refer to solid-state rectifying semiconductor de-
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vices, which operate from different physical principles. It would
be counterproductive to argue that we need different names,
or to complain that the definition of “diode” was changed to
something more broad than its original meaning. To this day,
we continue to use the name “diode” for a variety of vacuum
tube and the solid-state devices (a short list is shown in Fig-
ure 89), even though they have very different constructions and
different underlying physics. Their behavior is qualitatively the
same, and that’s what matters most for the purpose of circuit
engineering.

A more subtle example is the phenomenon of diode reverse
breakdown. When Zener hypothesized the reverse breakdown
effect, he proposed that it would be caused by quantum tun-
neling in the device 7. When diodes are used in their reverse 7

breakdown mode, they are commonly called “Zener diodes” to
honor his purely mathematical discovery. We now know when the
breakdown voltage is greater than about 5 V, avalanche ioniza-
tion is the primary mechanism, not quantum tunneling. This
distinction may be relevant for optimizing a particular design
for a particular application, but from the standpoint of circuit
theory they both deliver the same qualitative behavior, and
for most purposes there’s nothing wrong with using the name
“Zener diode” to refer indifferently to both physical effects. It
would be silly to declare that “Zener was wrong” or to insist
that avalanche diodes are not “true” Zener diodes; it’s much
more useful to describe tunnel devices and avalanche devices as
subtypes of the general diode class.

Finally, to answer Vongehr and Meng’s alternate universe
scenario, imagine that we discovered a device that relates φ to
i — it stores energy and resists a sudden change in current —
but is found to contain no internal magnetic fields of any kind.
Perhaps the device is governed by electrochemical reactions or
by tiny molecule-sized demons; it doesn’t matter. What matters
is if the device’s behavior is indistinguishable from an inductor,
then for all practical purposes it is an inductor. It would be
meaningless to say that it isn’t a “true” inductor, just as it would
be meaningless to say that only vacuum tubes are “true” diodes.

Pessimism

5. Non-volatile memristors are impossible. Some researchers
have argued that memristors’ internal states could be disrupted
by noise processes. If that’s true, then it will not be possible
to store information indefinitely in a memristor memory cell,
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and RRAM will not work as a replacement for Flash devices.
This argument is put forward by Meuffels and Soni in a draft
available at the arxiv server8 (note that arxiv papers are not peer 8

reviewed).
The article has been cited by a few peer-reviewed articles,

and may have some validity. But several critics have also
claimed this analysis as evidence that memristors are “im-
possible” as real devices. Their reasoning is that a memristor is
supposed to be non-volatile, meaning it should remember its
resistance state indefinitely. If Meuffels and Soni showed that
permanent memory is unlikely, then the memristor must be
impossible, right?

Answer: We already used an identical argument to prove
that capacitors are impossible, since their charge tends to leak
away. This argument describes the same kind of problem that
we see in DRAM: stored information is temporary. For this
reason, DRAM memories require a refresh operation to periodi-
cally re-write the stored information. Perhaps memristor-based
RRAMs will also require a refresh operation. Perhaps that will
make RRAMs less competitive compared to other memory
technologies. That could all be true, but at most it means that
memristors will be disappointing in the RAM market. It doesn’t
have anything to do with memristors being “impossible” de-
vices. It just means that the non-volatility property is temporary
in ressitance-switching devices.

Conclusion

Memristors are a fascinating area of current research in both the-
ory and experiment. This chapter has introduced only the most
basic facts about memristors. We examined and answered a few
of the major arguments that have generated some controversy
on the topic. One can find many more arguments circulating
in the wild, but the ones listed here are deemed by the author
to be the strongest criticisms. The current scientific consensus
is that memristors comprise a legitimate theory bolstered by
numerous real devices and phenomena. The reader can gain
direct experience by purchasing a resistance-switching sample,
or by constructing a replica coherer device, or by studying one
of the biochemical substances that are now known to exhibit
memristive behavior. More advanced resistors are dangerous to
manufacture without proper facilities, so students are urged to
exercise caution in their explorations.

http://www.sparkbangbuzz.com/els/coherer-el.htm


Introduction to MOSFETs

Why do we need transistors?

Gate (G)

Source (S)

Drain (D)

+

−

vDS
+

−vGS

iD

iD

Figure 90: NMOS device symbol, showing the
device’s three major terminals. Current flows
between the drain (D) and source (S) terminals,
and is controlled by the gate (G), like a valve. A
fourth terminal. known as the bulk, body, or substrate,
is not shown. The substrate is usually shared by
many devices, and for NMOS devices it should
be connected to the circuit’s most negative potential
(usually ground or VSS.

Diodes can perform logic operations, but they cannot perform:

• NOT, NAND or NOR operations – diode logic gates are not
universal!

• Amplification – signals attenuate as they pass through diode
networks, so large-scale systems are impossible with diodes
alone.

Amplification is the fundamental characteristic needed for
logic circuits – the device must be able to deliver more energy at
its output than provided at its input.

MOSFET as switch

Gate (G)

Source (S)

Drain (D)
−

+

|vDS|
−

+|vGS|

iD

iD

Figure 91: PMOS device symbol, which is comple-
mentary to the NMOS device. The drain and source
terminals are flipped (current is understood to flow
vertically downward from the source to the drain). A
“bubble” is commonly drawn at the gate to indicate
that the device responds to the logical complement
of the gate signal. For PMOS devices, the substrate
is usually connected to the circuit’s most positive
potential (usually VDD.

The MOSFET has three terminals, source, gate and drain. We
may first understand the MOSFET as a logic switch. In this
model, the terminal potentials are interpreted as logic val-
ues, i.e.the logic set {0, 1} is mapped to the potential values
{0, VDD}. Under this model we may consider all signals to be
either HIGH or LOW. Then the behavior is as follows:

Device Type vG Device State vDS

NMOS HIGH ON small
LOW OFF large

PMOS HIGH OFF large
LOW ON small

Notice two things:

• The NMOS and PMOS have complementary behavior, i.e. they
have opposite states in response to the gate voltage.

• When the device is ON, the drain-source voltage vDS must be
quite small. When the device is OFF, the drain-source voltage
can be large. This is the behavior we expect from a switch.
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MOSFET as a current source

The MOSFET is an analog device, meaning it does not merely
have “OFF” and “ON” states, but has a continuous range of
in-between states. If a MOSFET is balanced in an “almost-on”
state, known as its saturation mode, it produces an approx-
imately constant current. Therefore we can use a MOSFET
device to implement a DC current source.

In practice, an NMOS device first begins to switch ON when
its VGS crosses a device-specific threshold voltage, VTh. When VGS

is just slightly above VTh, the device enters its saturation mode.
If VGS is increased, the current increases. If VGS is held constant,
the current stays constant. If we keep increasing VGS, the device
eventually turns fully ON, at which point it no longer acts like a
current source, and behaves more like a small resistor.

In the PMOS case, the device first begins to switch ON when
its VSG voltage exceeds the device’s VTh, which places the device
in its saturation mode. The behavior is again complementary
to the NMOS: as VG is lowered, VSG increases, and the cur-
rent increases. Eventually, when VG becomes low enough, the
PMOS device turns fully ON and no longer works like a current
source.

If the MOSFET is balanced in its saturation mode, and a
time-varying signal is applied to the gate, the device’s current
will change in response to the gate signal. Hence the MOSFET
in saturation is considered to be a transconductance amplifier:
it produces a current output (at the drain) in response to a
voltage input (at the gate).

One of our key design tasks will be to balance the MOSFET
in the appropriate mode for our intended application. When
making switching circuits, we want the MOSFET to be toggle
between ON and OFF states. When making a current source or
an amplifier, we want the MOSFET to be suspended in between,
in its saturation mode, with a relatively small value of VGS (for
NMOS) or VSG (for PMOS).

Electrical Characteristics

R

vIN

vOUT

Figure 92: NMOS RTL inverter configuration.

The MOSFET is of course more complicated than the switch
model implies. To get a more detailed picture of MOSFET be-
havior, we may consider an alternative invterter circuit known
as the resistor-transistor logic (RTL) configuration. The RTL
circuit is inferior to the CMOS configuration in that it draws
static power when the NMOS device is ON. This is because
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the MOSFET must pull a constant current through the resistor
R in order to maintain a low output voltage. It is nevertheless
helpful to study the RTL inverter, because its properties are
somewhat easier to analyze than the CMOS design.
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Figure 93: Transfer characteristic of the RTL inverter
obtained from a SPICE simulation, showing the
operating modes (I) Cutoff, (II) Saturation and (III)
Triode.

The RTL inverter’s DC transfer characteristic is split into
three regions, representing the different modes of the NMOS
device:

I Cutoff— When vIN is below the devices threshold, VTh, it is
considered OFF and behaves like an open circuit between the
Drain and Source.

II Saturation — When vIN is slightly greater than VTh, the de-
vice is partially turned ON. The output voltage is determined
by the current through the MOSFET, which depends strongly
on vIN.

III Triode — The device is considered fully ON when vOUT <

vIN − VTh. In this mode, the Drain and Source are almost
short-circuited.

The precise behavior of a MOSFET device is modeled by
three different equations corresponding to three operating
modes. The equations are qualitatively different, but they
should be piecewise continuous (i.e. they should connect at the
boundaries between each mode). These equations relate the
device’s drain current, iDS, to the gate-source and drain-source
voltages vGS and vDS, respectively. To simplify the equations, we
define the Overdrive Voltage as

vOV , |vGS| − |VTh| .

Then the device equations are:

I Cutoff — vOV ≤ 0:
iDS = 0

II Saturation — vOV > 0 and |vDS| > vOV:

iDS =
1
2

kv2
OV.

III Triode — vOV > 0 and |vDS| ≤ vOV:

iDS = k
(

vOV |vDS| −
1
2
|vDS|2

)
.

In these equations, k is a scale constant with units µA/V2,
and is typically on the order of 100 µA/V2 to 1 mA/V2. The
threshold voltage is a manufacturing parameter that varies
widely between different technologies. It is typically between
0.4 V and 2 V.
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NMOS RTL Inverter Analysis

Considering the NMOS RTL inverter shown above, suppose
VTh = 2 V, k = 100µA/V2, R = 100kΩ and VDD = 5 V. Given the
model equations above, solve for the DC transfer characteristic
of vOUT as a function of vIN.

Solution: We may divide the analysis into the three regions,
and determine the points where these regions meet. Since the
MOSFET’s source terminal is tied to ground, we observe that
vGS = vIN and vDS = vOUT. If we imagine that vIN is initially
zero, and is slowly increased toward VDD, then we have three
subproblems:
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Figure 94: Comparison of analysis and simulation re-
sults in the three operating modes, cutoff, saturation,
and triode.

I Cutoff— When vIN < VTh, verify that vOV < 0, therefore
iDS = 0. In that case, there is no current flowing through R, so
vOUT = VDD = 5 V.

II Saturation — When vIN > VTh, then vOV > 0 and the device’s
current is given by the square-law equation. Then vout is
determined by the voltage drop across R:

vOUT = VDD −
1
2

Rkv2
OV

= 5 V− 5 (vIN − 2 V)2

As vIN increases, vOUT will decrease until the MOSFET enters
the triode mode. That transition happens when vOUT = vOV,
i.e.

vOV = 5 V− 1
2

Rkv2
OV

⇒ 0 =
1
2

Rkv2
OV + vOV − 5

Since the result is a quadratic equation, we can apply the
standard formula and solve:

vOV =
−1±

√
(1)2 − 4

(
1
2 Rk

)
(−VDD)

Rk

=
−1±

√
1 + 2RkVDD

Rk

if 2Rk� 1 : vOV ≈
√

2VDD

Rk

Note that we chose the positive result in the quadratic equa-
tion, since vOV has to be positive in both saturation and triode,
otherwise these equations wouldn’t apply. The results are:

exact: vOV = 0.905 V

approx: vOV ≈ 1 V



introduction to mosfets 115

And the corresponding values of vIN are:

exact: vIN = 2.905 V

approx: vIN ≈ 3 V

III Triode — When vIN > 2.5188 V, the device should enter
triode, and the new device equation is

iDS = k
(

vOVvOUT −
1
2

v2
OUT

)
⇒ vOUT = VDD − Rk

(
vOVvOUT −

1
2

v2
OUT

)
Once again we can arrange this in the form of a quadratic
equation:

0 =
1
2

Rkv2
OUT − (1 + RkvOV) vOUT + VDD

vOUT =
(1 + RkvOV)±

√
(1 + RkvOV)

2 − 2RkVDD

Rk

=
(1 + RkvOV)−

√
1 + (RkvOV)

2

Rk

Note that if RkvOV � 1 the equation simplifies to vOUT = 0.
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PMOS RTL inverter analysis

In the PMOS version of the RTL inverter circuit, the circuit is
“flipped upside down” and the behavior is transposed. The
circuit’s logical behavior is the same as the NMOS version, but
the fine details are changed. We see that the cutoff, saturation
and triode regions now appear in different places:

R

vIN

vOUT

Figure 95: PMOS RTL inverter configuration.

In this configuration, we start by solving for |vGS|, |vDS| and
vOV in terms of the terminal signals:

|vGS| = VDD − vIN

|vDS| = VDD − vOUT

vOV = |vGS| − |VTh|

We may then proceed with the same analysis steps as before,
only this time we imagine that vIN starts at VDD and is slowly
decreased down to zero.
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Figure 96: DC transfer characteristic obtained from a
SPICE simulation of the PMOS RTL inverter.

I Cutoff— When vOV < 0, the MOSFET is OFF so that iDS = 0.
In that case, there is no current flowing through R, so vOUT =

0. This describes the region where vIN > VDD − |VTh|.

II Saturation — When vOV > 0 and |vDS| > vOV, the device’s
current is given by the square-law equation. This corresponds
to the case when:

VDD − vOUT > VDD − vIN − |VTh|
⇒ vOUT < vIN + |VTh|

In this region, vout is determined by the voltage drop across R:

vOUT =
1
2

Rkv2
OV

= 5 (VDD − vIN − 2 V)2

As vIN decreases, vOUT will decrease until the MOSFET
enters the triode mode. That transition happens when VDD −
vOUT = vOV, i.e.

vOV = 5 V− 1
2

Rkv2
OV

⇒ 0 =
1
2

Rkv2
OV + vOV − 5

Notice that this is the same quadratic equation we obtained
for the NMOS circuit, so we can borrow the results from
before:

exact: vOV = 0.905 V

approx: vOV ≈ 1 V
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And the corresponding values of vIN are:

vIN = VDD − vOV − |VTh|
exact: vIN = 5 V− 2.905 V = 2.095 V

approx: vIN ≈ 5 V− 3 V = 2 V
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Figure 97: Comparison of analysis and simulation
results for the PMOS RTL inverter.

III Triode — When |vDS| < vOV, the device enters triode. This
corresponds to the case where

VDD − vOUT < VDD − vIN − |VTh|
⇒ vOUT > vIN + |VTh|

or when vIN < vOUT − |VTh|

In this region, the device’s current and output voltage change
as follows:

iDS = k
(

vOV |vDS| −
1
2

v2
DS

)
⇒ vOUT = Rk

(
vOV |vDS| −

1
2

v2
DS

)
⇒ VDD − |vDS| = Rk

(
vOV |vDS| −

1
2

v2
DS

)
Once again we can arrange this in the form of a quadratic
equation, but this time we will simplify the equation by
leaving it in terms of vDS, so we get:

0 =
1
2

Rkv2
DS − (1 + RkvOV) |vDS|+ VDD

|vDS| =
(1 + RkvOV)±

√
(1 + RkvOV)

2 − 2RkVDD

Rk

=
(1 + RkvOV)−

√
1 + (RkvOV)

2

Rk

Notice that this is the exact same result as before, only it’s
“upside down.” We can next get the solution for vOUT:

vOUT = VDD − |vDS|

= 5 V−
(1 + RkvOV)−

√
1 + (RkvOV)

2

Rk

Finally, if we suppose RkvOV1� 1 then vOUT → VDD.
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Comparison of NMOS and PMOS versions

0 2 4
0
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4

NMOS

PMOS

vIN

v O
U

T

Figure 98: Overlay of the NMOS and PMOS RTL
inverter transfer characteristics. Both devices behave
as an inverter. They differ slightly in the offset
voltage at which they “tip” from high to low.

Our results show that both the NMOS and PMOS configura-
tions have the same qualitative behavior. They both function
as logic inverters. If we were to balance one of these circuits
right in the center of its saturation region (II), where the slope
is very steep, we could use it as an inverting amplifier. We will
soon introduce linearized amplifier models that apply in the
saturation region; it will be important to recognize that both
NMOS and PMOS devices have the same linearized models in
saturation, just as they show the same behavior in the RTL in-
verter configurations, even though they exhibit complementary
logical behavior.

Behavior in Saturation

+−

+−vDS

iDS

Figure 99: An experiment in which vGS is held
constant while sweeping vDS.

We may now go one level deeper and examine the MOSFET’s
behavior in the saturation mode. First, let’s understand why it’s
called “saturation.” Suppose we hold the gate potential fixed so
that vGS = 1 V and perform a DC sweep on vDS while measuring
the current.
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Figure 100: The triode equation predicts decreasing
current when vOV > vDS (dashed line). Physical laws
dictate that the current should be non-decreasing as
vDS is increased, so the current saturates at a nearly
constant value.

According to the triode equation, the current should be a
parabola:

iDS = k
(
(1)vDS −

1
2

v2
DS

)
.

But if that were true, the current would begin to decrease when
vDS > 1 (dashed curve below), and eventually the current would
swing negative, creating an impossible free-energy device.
Obviously this doesn’t happen, instead the device current rises
monotonically until it reaches the peak of the parabola, and
then flattens out at higher vDS (solid curve). This is why it’s
called “saturation”: when vDS is swept from zero, iDS increases
until it saturates at a maximum value.

Since the saturation current is approximately constant, we
may interpret the MOSFET as a nonlinear voltage controlled
current source that depends on the gate voltage. For a first-
order circuit analysis, we can replace the MOSFET symbol with
a dependent current source. When a small signal is applied at
the gate, we can write the gate voltage as a superposition of the
DC signal (VG) and the small signal (vg). In that case we can
linearize the current source by solving the first-order Taylor
approximation:

iD ≈ VGS +

(
d iD
d vgs

∣∣∣∣
VGS

)
vgs.
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It will often be useful to analyze the small-signal equivalent
circuit, which is obtained from the linearized model by zeroing
out DC independent sources. For this purpose we may simplify
the expression:

id ≈
(

d iD
d vGS

∣∣∣∣
VGS

)
vgs.

Drain

gm vgs

Source

Gate

vGS

+

−

Figure 101: The MOSFET behaves like a dependent
current source controlled by the gate-source voltage.

Since the MOSFET takes a voltage as input and produces a
current as output, it is conventionally interpreted as a transcon-
ductance amplifier. The amplifier’s transconductance gain,
conventionally denoted as gm, is defined as the derivative of iD

with respect to vGS:

gm ,
d iD
d vgs

∣∣∣∣
VGS

Then we can write the device’s small-signal behavior as simply

id = gm vgs.

Channel Length Modulation
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Figure 102: Transfer characteristic of iD vs vDS for
an NMOS device at three different values of vOV.
The slope is not completely flat in the saturation
region. This means the device should have a finite
differential resistance when in saturation.

In a real MOSFET device, the saturation current is not perfectly
constant with increasing vDS. Instead, we see an approximately
linear increase with vDS, which can be partially explained as
a variation in the MOSFET’s channel dimensions. From the
circuit perspective, this behavior is modeled by augmenting the
square-law equation with a “fudge factor” λ:

iDS =
1
2

kv2
OV (1 + λ |vDS|) .

Typically λ is in the range from 0.01 V−1 to 0.1 V−1. When
including channel length modulation (CLM), the curves are not
completely flat in saturation.

Drain

gm vgs

Source

Gate

vGS

+

−

ro

Figure 103: When CLM is included, it appears as an
output resistance in the transconductance amplifier
model.

Since we consider the MOSFET to be a transconductance
amplifier, we can interpret the slope due to CLM as the output
resistance:

ro ,
(

d iD
d vDS

∣∣∣∣
DC

)−1
.

In this definition, the derivative is evaluated at the DC operat-
ing point, which encompasses all the DC values of VGS, VDS and
ID.

Calculating gm and ro

The transconductance and output resistance can be calculated
in a few different ways. We could measure these parameters
experimentally by using an ammeter to observe the changes
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in iD that result from small variations in vGS and vDS. For hand
analysis, we can directly integrate the device equations:

d iD
d vGS

=
d

d vGS

(
1
2

k (vGS −VTh)
2
)∣∣∣∣

DC

= k (VGS −VTh)

= kVOV

This tells us that the transconductance gain is directly propor-
tional to the DC overdrive voltage. Summary, Saturation Mode

Large Signal:

vOV = |vGS| − |VTh|

iD =
1
2

k v2
OV

when |vDS| > vOV

and vOV > 0.

Small-Signal:

gm = k VOV

=
√

2k ID

ro = (λ ID)
−1

In practice, it is often easier to select a DC bias current ID,
rather than to directly control VOV. In that case, it is useful to
express gm in terms of ID:

kVOV =
√

k (k V2
OV)

=
√

2k ID

This expression tells us that the transconductance gain is pro-
portional to the square root of the DC bias current.

Lastly, to calculate the output resistance we need to consider
CLM:

ro =

(
d

d vDS

(
1
2

kv2
OV (1 + λ vDS)

)∣∣∣∣
DC

)−1

=

(
1
2

kv2
OVλ

)−1

=
1

λ ID

This expression tells us that the output resistance is inversely
proportional to the bias current. Since the transconductance
increases with

√
ID, there is a tradeoff between transconduc-

tance and output resistance. This tradeoff will have important
consequences for practical circuit design.

Some important DC configurations

There are a few patterns that appear frequently in MOSFET
circuits, and it will be useful to have their solutions available for
reference. The two major cases are the diode connection and the
passive resistor bias network. The third case is a combination
of the first two. Additional configurations can be understood as
special cases of these three configurations.

R

VDD

VD

ID

Figure 104: Diode-connected NMOS device.

Diode connection: When the MOSFET’s gate is directly
connected to the drain terminal, it is referred to as a “diode
connection.” In this configuration, the drain terminal provides
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a negative feedback loop to the gate terminal, so that the circuit
settles into a stable DC state. Since vGS is determined by the
voltage drop across R, which is in turn determined by the
current ID, the solution is governed by feedback:

VGS = VD = VDD − IDR

ID =
1
2

kV2
OV

=
1
2

k (VDD − IDR−VTh)
2

To complete the solution, we define a variable x =
√

ID, and The diode connection is guaranteed to always be in
the saturation mode, since VDS = VGS it is always
assured that VDS > VOV.

then arrange the above equation into a quadratic equation:

R

√
k
2

x2 + x−
√

k
2
(VDD −VTh) = 0

Applying the quadratic formula:

x =
−1±

√
1 + 2kR (VDD −VTh)

R
√

2k

⇒ ID = x2 =

(
−1 +

√
1 + 2kR (VDD −VTh)

)2

2kR2

A diode connected configuration is implemented with VDD = 5 V, R = 50 kΩ, and the MOSFET param-
eters are k = 500 µA/V2, VTh = 0.5 V and λ = 0.05 V−1. The analysis from this section predicts a bias
current of ID = 78.8 µA, which is quite close to the simulated value. We can also verify that the gate
voltage should be VG = 1.06 V, which is again quite close to the simulated result.

EveryCircuit Demonstration 20 (Diode connected NMOS device).

http://everycircuit.com/circuit/5313518818033664
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RS

RD

VDD

VG

VS

VD

ID

Passive bias network: In this very general case, resistors are
placed adjacent to both the source and drain terminals, and the
gate is biased at some constant voltage, such that the device is
held in its saturation mode. There are interactions at both the
drain and source terminal:

VD = VDD − IDRD

VS = IDRS

ID =
1
2

k (VG − IDRS −VTh)
2

we solve this case in much the same way as the diode-connected
circuit. By defining x =

√
ID, we can obtain a quadratic polyno-

mial:

0 = RS

√
k
2

x2 + x−
√

k
2
(VG −VTh)

⇒ x =
−1±

√
1 + 2kRS (VG −VTh)

RS
√

2k

and ID = x2.

A NMOS passive bias configuration is implemented with VDD = 5 V, RD = 50 kΩ, RS = 20 kΩ,
VG = 1.25 V, and the MOSFET parameters are k = 500 µA/V2, VTh = 0.5 V and λ = 0.05 V−1.
The analysis from this section predicts a bias current of ID = 22.5 µA, which is quite close to the sim-
ulated value. We can also verify that the source voltage should be VS = 0.45 V, and the drain voltage
should be VD = 3.875 V. We can then verify that the device is biased in saturation since VDS = 2.44 V
whereas VOV = VG −VS −VTh = 0.3 V. All of these calculations are very close to the simulation results.

EveryCircuit Demonstration 22 (NMOS bias network).

http://everycircuit.com/circuit/5313518818033664
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MOSFETs as Switches

Many digital and mixed-signal applications use MOSFET
devices as logic switches. Like all devices, MOSFETs make
imperfect switches, but with careful design they can be used to
realize complex and efficient logic circuits. When operated as
a switch, we will primarily use the triode and cutoff operating
modes, corresponding to ON and OFF states, respectively.
Cutoff is easy to understand: the device is OFF, no current flows
between the source and drain terminals, and we can treat it like
an open circuit.

vG

(a)

VDD

vD

vG

(b)

VDD

vS

Figure 105: An NMOS device in (a) pull-down
configurration, and (b) pull-up configuration.

The ON behavior is more complicated. When a MOSFET
switches ON, it usually transitions into the saturation mode first
before settling into the triode mode. In some configurations,
the MOSFET may be prevented from entering triode, making it
“stuck” in saturation, where it performs poorly as a switch. As
an example, consider the two scenarios shown in Figure 105.

The pull-down configuration is basically identical to the
NMOS RTL inverter circuit. We now include the presence
of a parasitic capacitance at the MOSFET’s drain node. This
capacitor must be charged or discharged in order to change the
drain voltage. As a result, the circuit’s transient behavior will
look somewhat like the DC behavior we saw before. Suppose
the device is initially OFF, and the capacitor at vD is initially
charged to VDD. Then, when vG transitions from zero to VDD, the
NMOS device is initially in cutoff. Once vG crosses the device’s
threshold voltage, it enters the saturation region and begins to
draw current that discharges the capacitor at vD. After some
time, the capacitor is discharged enough so that the device
enters triode, and eventually it may be discharged to zero.

The pull-up configuration doesn’t work as well. Suppose
that the NMOS device in Figure 105(b) is initially OFF, and the
capacitor is initially fully discharged so that vS = 0 V. Then
when vG switches from zero to VDD, the NMOS device begins
to turn on. But since vD = VG = VDD, it will never cross into
triode because vDS > vGS − VTh, regardless of what happens
at vS. Therefore as the device tries to pull up vS, its current is
governed by the square law, iD = k v2

OV. As the capacitor charges
up, vOV eventually goes toward zero. In the end, the capacitor
cannot be charged any higher than

vs, max = VDD −VTh,

because this is the voltage where vOV becomes zero, and device
switches OFF.
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The behavior of a PMOS device is similar but complementary.
PMOS devices pull-up well, but are not able to pull down.
When a PMOS device is used to pull down a signal, the best
it can achieve is a source voltage equal to |VTh|. The PMOS
analysis is identical to the NMOS analysis.

This example shows the NMOS RTL inverter configuration. THe transient simulation shows that
when the NMOS device is ON, the active pull-down is very fast and effective. When the NMOS
device is OFF, however, the passive pull-up operation is very slow due to the RC delay. Note that this
example uses a manual switch to change the input signal. You have to click it to change the state.

EveryCircuit Demonstration 24 (NMOS RTL inverter).

This circuit shows a combination of the pull-up and pull-down configurations shown in Figure 105.
The two configurations are folded together, so there is no resistor current to overcome. The simula-
tion shows that the NMOS device pulls down very well, but the pull-up operation is both slow and
incomplete. A PMOS pull-down example is also available, showing the complementary behavior.

EveryCircuit Demonstration 26 (NMOS pull-up and pull-down).

Ideal CMOS Inverter

in out

VDD

Figure 106: Standard CMOS inverter circuit.

MOSFET switching behavior is exemplified by the CMOS
inverter circuit, which is the simplest logic gate. When the
input (gate) voltage is high, the NMOS device is ON while
the PMOS device is OFF. The NMOS device pulls the output
low while the PMOS device does nothing. When the input is
low, the NMOS device switches OFF while the PMOS device
switches ON, pulling the output high. This results in a very
clean logic inverter behavior. More importantly, when the gate
is idle (not switching), there is no current through either the
NMOS or PMOS device, so we say there is zero static power
dissipation. Power is only dissipated during switching, when a
small amount of energy must be expended to change the output
voltage.

http://everycircuit.com/circuit/6540231808385024/nmos-rtl-inverter
http://everycircuit.com/circuit/4755737321406464/pmos-pull-down
http://everycircuit.com/circuit/5010119107543040/nmos-pull-up


introduction to mosfets 125

Static CMOS Logic

Q

A B

A

B

A
B

A
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Q

Figure 107: CMOS NAND gate and its logic inter-
pretation. The PMOS pull-up network uses two
devices in parallel, representing an OR function with
inverted inputs. The NMOS pull-down network uses
two devices in series, representing an AND function
with inverted output. By de Morgan’s Laws, these
functions are equal, but complementary.

The most successful and widespread application of MOSFET
devices is CMOS logic, which is the foundation of modern dig-
ital electronics. The majority of CMOS logic circuits are based
on the static CMOS gate structure, which uses a PMOS pull-up
network in parallel with an NMOS pull-down network.

Static CMOS gates are based on four basic principles:

• Series (stacked) MOSFETs implement an AND operation

• Parallel MOSFETs implement an OR operation

• NMOS devices invert their outputs (i.e. place a bubble at the
network’s output port)

• PMOS devices invert their inputs (i.e. place bubbles at the
network’s input ports).

(AB)A + B

(A + B)(A)(B)

⇐⇒

⇐⇒

NAND

NOR

Figure 108: De Morgan’s Laws: (AB) = A + B and
(A + B) = (A)(B).

By using De Morgan’s Laws, we can transform any logic
function into a PMOS network and an NMOS network, then
short their outputs together. According to de Morgan’s Laws, a
NAND gate is equivalent to an OR gate with inverted inputs,
and a NOR gate is equivalent to an AND gate with inverted
inputs.

So to produce a gate with some desired function F, we start
with a logic gate implementation, and then apply transforma-
tions to create two versions: one with a single bubble at the
output (for the NMOS network), and another with bubbles on
all the top-level inputs (for the PMOS network). In both net-
works, there should be no bubbles in the connections between
gates. We can also insert inverters onto the inputs and outputs
in order to complement them as needed.

(AB)A + B

(A + B)(A)(B)

⇐⇒

⇐⇒

AND

OR

Figure 109: Alternative version of de Morgan’s Laws:
AB = A + B and (A + B) = (A)(B).

In the process of obtaining the PDN and PUN circuits, sev-
eral circuit transformations are allowed. The basic gate conver-
sions from de Morgan’s Laws are always permitted, as are the
alternative transformations shown in Figure 109. If a bubble
is present on a connection, it can be moved to the other end of
the connection, where it might be useful for applying a gate
transformation. We can also insert “double bubbles” by placing
a bubble at the start and end of a connection. Double bubbles
can also be removed if needed, since they cancel each other out.
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Suppose we are given a four-input logic function F = A(B + CD). To synthesize a static CMOS imple-
mentation, we begin with a classic logic circuit, and then apply de Morgan’s laws to transform it:

C
D B A F

C
D B A F

C
D B A F

C
D B A F

F

A B

C

D

A

B

C

D

1A. PMOS PUN: Using de Mor-
gan’s Laws, make gate transforma-
tions to insert bubbles at the signal
inputs.

1B. Cancel the double-bubbles and add an
inverter to eliminate the output bubble.
Now there should be bubbles on all input
signals, but no interior bubbles.

2. NMOS PDN: Since there are already no interior bubbles,
simply place a bubble on the output signal and cancel it with
an inverter. Now both the PUN and PDN have inverters at
the output; for the transistor implementation, we ignore the
inverters. An inverter will be attached to the gate’s output after
we are finished.

4. Transistor implementation: For both networks, begin on the
left-most gate and compose a heirarchical structure. OR means
a parallel connection, AND means a series (stacked) connection.
Once the structures are built, connect the PMOS and NMOS
networks together in the middle. Connect VDD to the top of
the PMOS network, and ground to the bottom of the NMOS
network. Lastly, insert any needed inverters to complete the
circuit.

Example 21 (Static CMOS logic design).



introduction to mosfets 127

The Exclusive OR (XOR) function is crucial for many logic and arithmetic circuits. The function is
F = A⊕ B = AB + AB. To synthesize a static CMOS XOR gate, we begin with a classic logic circuit,
and then apply de Morgan’s laws to transform it as follows:

A
B

A
B

F

F

A
B

A
B

F

A
B

A
B

F

A
B

A
B

F

A
B

A
B

A

B

A

B

A

BA

B

F

A

B

A

B

1. PMOS PUN: Just com-
plement two of the input
signals to get bubbles on
all of them.

2A. NMOS PDN: Transform one gate
to get a bubble on the output.

2B. Move the nuissance bubbles, and
complement two input signals so
the left-side AND gates are fully
surrounded with bubbles.

2C. Transform the left-side AND
gates to eliminate the bubbles.

3. To complete the transistor implementation, we proceed as before and implement AND gates as
stacked connections, while OR gates are parallel connections. The PUN consists of two stacks (from
the left-side AND gates) connected in parallel. The PDN consists of two parallel connections, stacked.
Inverters are inserted to produce A and B (all of the signal wire connections are not shown). In total,
12 transistors are needed.

Example 22 (Static CMOS XOR gate).
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Transmission Gates

ba

φ

φ

Figure 110: A CMOS transmission gate acting as
a switch between nodes a and b. The switch is
controlled by a logic signal φ ∈ {0, VDD} . The switch
is ON when φ is high. An inverter is required to
produce φ, which is needed to switch the PMOS
device.

In order to make a general-purpose switch that can be used for
both pull-up and pull-down operations, we can simply connect
PMOS and NMOS devices in parallel. This circuit is commonly
called a transmission gate. It acts as a passive switch, meaning
it cannot directly provide energy to its terminals, it can only
transfer energy.

Q

A

B

Figure 111: XOR gate based on transmission gates.
The logic function is Q = AB + AB. This circuit
requires a total of eight MOSFETs.

Transmission gates are useful for efficiently realizing several
types of logic gates. For example, transmission gates provide
one of the simplest realizations for the exclusive-OR (XOR)
gate. Transmission gates also provide a natural realization for
multiplexor (MUX) gates.

Analog Switching

In addition to digital applications, transmission gates are useful
for switching analog signals. One common application is the
track and hold (T/H) circuit, which serves as the front-end for
many sampling circuits, such as analog-to-digital converters.
The most basic T/H circuit contains only a capacitor and switch.
When the switch is ON, the capacitor “tracks” the voltage of
the input signal. When the switch is OFF, the capacitor is left
floating. In this condition, no charge can be added or removed
from the capacitor, so it “holds” whatever voltage it contained
at the moment when the switch turned OFF.

When a T/H circuit is used to sample a slow-changing ana-
log signal, then there will usually be a small signal difference
between each sampling event. As a result, |vDS| will tend to be
small each time the transmission gate is switched ON, so the
devices start out in triode rather than saturation. This scenario
is an example of small-signal switching. When the devices are
ON, it is useful to think of them as approximate resistors, where
the resistance is

rON ,
[

d iD
d vDS

]−1

DC, triode

=

[
d

d vDS

k
(

vOVvDS −
1
2

v2
DS

)]−1

DC

= [k (VOV −VDS)]
−1

When the device is fully ON, VDS may be very small. In switch-
ing applications, VOV is always VDD −VTh, so for a fully-ON device
we can say that the small-signal equivalent resistance is

rON =
1

k (VDD −VTh)
.
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Lastly, for a transmission gate, the equivalent resistance is
the parallel combination of the rON values for the NMOS and
PMOS devices.

This circuit implements a passive T/H circuit based on the transmission gate switch. The circuit has
supply voltage VDD = 5 V and a 100 nF hold capacitor. The device parameters are as follows:

NMOS PMOS
kn = 500 µA/V2 kp = 250 µA/V2

VThN = 0.5 V VThP = 0.5 V
λn = 0.05 V−1 λp = 0.1 V−1

Based on these parameters, the triode ON resistance should be

rON, n = [kn (VDD −VThN)]
−1

= 444 Ω

rON, p =
[
kp (VDD −VThP)

]−1

= 888.9 Ω

In parallel, the total ON resistance for this switch should be rON = 296 Ω. When the switch is turned
ON, the output signal’s rise time is determined by the time constant formed by rON and C, which
works out to be τ = 29.63 µs. Then the 10–90% rise time is tr = 2.2τ = 65.2 µs. This gives an indica-
tion as to the minimum switching period for this T/H circuit. In practice, 10–90% is not sufficient to
obtain a high-precision sample, so a switching period five to ten times slower may be required.

The simulation example shows an input signal at 100 Hz with a switching period of 500 µs, which is
almost 10× higher than the calculated rise time. By zooming in on the waveform, you can see that
the tracking accuracy improves gradually with more time in the tracking phase. The slow conver-
gence is a direct consequence of the ON resistance in the transmission gate.

EveryCircuit Demonstration 28 (Transmission gate track-and-hold circuit).

http://everycircuit.com/circuit/6077458041274368
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MOSFETs as Amplifiers

We saw previously how the MOSFET device can be interpreted
as a transconductance amplifier: the input signal is vGS, and the
output signal is iD. We can build on this concept by configuring
the MOSFET in several ways to make different types of ampli-
fiers. In all cases, we will deliberately operate the device in its
saturation mode, balanced between its ON/OFF states.

Common-Source Configuration

R

+−VIN

vin

vIN

vOUT

vout

gm vgs

vin

vgs = vin

+

−

ro R

Figure 112: NMOS common-source amplifier config-
uration and its small-signal equivalent model. Since
VDD is shorted out in the small-signal model, the
bias resistor R appears in parallel with the device’s
internal resistance ro .

As a first example, we consider the RTL inverter circuit, only
now we will try and balance the circuit at the point where
its transfer characteristic is steepest. We refer to this as the
quiescent point, Q point, bias point, or DC operating point.
We then superimpose a small AC signal on top of the DC
operating point. Amplifier design is therefore divided into two
tasks: biasing and small-signal analysis. We’ll consider biasing
strategies later. In this section we focus on basic small-signal
analysis techniques, as they dictate amplifier behavior and
potential applications.

To begin with, we consider the common-source configura-
tion and assume it is appropriately biased at a suitable DC
operating point. To analyze the small-signal behavior, we re-
place the MOSFET with its small-signal equivalent model (the
transconductance amplifier model). Second, we zero-out any
DC independent sources. This means that the VDD node gets
shorted to ground, so any devices connected to it are “folded
over” onto the ground node. Summary: CS amp

• Inverting amplifier

• Output resistance: ROUT = ro ‖ R

• Gain: Av = −gm ROUT

To analyze the amplifier characteristics, we use the small-
signal equivalent circuit to solve for the gain and output resis-
tance. From the model in Figure 113, we see that the amplifier
consists of a current source and two resistors. Since the two
resistors appear in parallel, we can merge them as R′o = ro ‖ R.
Then the output voltage is simply the voltage drop across R′o.
Since the current is drawn upward through R′o, the voltage drop
is negative. Solving for the gain:

vout = − (gm vin) R′o

⇒ Av =
vout

vin

= −gm R′o

To solve the output resistance, we set the input signal to zero
and solve for the equivalent resistance seen looking into the
output node. Since there is a literal resistance of R′o at that node,
the output resistance is clearly R′o.
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This example shows a basic common-source configuration for an NMOS device with kn = 500 µA/V2,
λn = 0.05 V−1 and VThN = 0.5 V. The supply voltage is 5 V. The gate is biased with a DC operating
voltage of VIN = 0.9 V, and the bias resistor is R = 50 kΩ. Capacitive coupling is used at the gate to
separate the DC bias voltage from the AC small-signal input. Capacitive coupling is also used at the
drain to remove the DC offset from the output signal.

Based on these parameters, we can calculate the device’s small-signal characteristics, and then obtain
the gain and output resistance as follows:

VOV = 0.9 V− 0.5 V = 0.4 V

ID =
1
2

kn V2
OV = 40 µA

VOUT = VDD − ID R = 3 V

gm = kn VOV = 200 µA/V

ro = (λn ID)
−1 = 500 kΩ

ROUT = ro ‖ R = 45 kΩ

Av = −gm ROUT = −9 V/V

Run the transient simulation and verify that the predicted gain and output offset are correct. You will
probably notice that the simulated output offset is 2.727 V. Can you explain this discrepancy? (Hint:
consider the effect of CLM with VDS = 2.727 V, then calculate new values for ID and VOUT).

EveryCircuit Demonstration 30 (NMOS Common-Source Amplifier).

http://everycircuit.com/circuit/6288164119904256
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PMOS Common-Source Configuration

R

+−VIN

vin

vIN

vOUT

vout

gm vgs

vin

vgs = vin

+

−

ro R

Figure 113: PMOS common-source amplifier configu-
ration. Its small-signal equivalent model is the same
as the NMOS version.

Now let’s consider the complementary PMOS version of the
common-source circuit. This circuit is obtained by swapping
the vertical positions of the MOSFET and resistor. In the PMOS
device, the drain current has an inverse response to the gate
voltage: when vIN rises, iD falls. Since the resistor is positioned
between the drain and ground, a smaller current means a
smaller output voltage at the drain. The result is that the small-
signal behavior is the same for both the NMOS and PMOS
versions.

To obtain the small-signal equivalent circuit, we zero-out
VDD and VIN, so that the PMOS source terminal is connected to
small-signal ground. Even though the PMOS device current has
an inverse response to the gate voltage, we can flip the device
upside down so that the source terminal is folded back onto the
ground node. We then obtain the exact same model as we had
for the NMOS version. What this means is that every NMOS
circuit configuration should have a complementary PMOS
version with the exact same behavior. The only differences will
be in the device’s k, VTh and λ parameters.

This example shows a PMOS version of the common-source amplifier. The parameters very similar to
the NMOS case: kp = 250 µA/V2, λp = 0.1 V−1 and VThP = 0.5 V. The supply voltage is 5 V. The gate
is biased with a DC operating voltage of VIN = VDD − 0.9 V, and the bias resistor is R = 50 kΩ. Then:

VOV = 0.9 V− 0.5 V = 0.4 V

ID =
1
2

kp V2
OV = 20 µA

VOUT = ID R = 1 V

gm = kp VOV = 100 µA/V

ro =
(
λp ID

)−1
= 500 kΩ

ROUT = ro ‖ R = 45 kΩ

Av = −gm ROUT = −4.5 V/V

Run the transient simulation and verify that the predicted gain and output offset are correct. You will
probably notice that the simulated output offset is 1.364 V. Can you explain this discrepancy? (Hint:
consider the effect of CLM with |VDS| = VDD − 1.364 V, then calculate new values for ID and VOUT).

EveryCircuit Demonstration 32 (PMOS Common-Source Amplifier).

http://everycircuit.com/circuit/5354159258206208
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Common-Source with Active Bias

ID

+−VIN

vin

vIN

vOUT

vout

gm vgs

vin

vgs = vin

+

−

ro

Figure 114: NMOS active-bias common-source am-
plifier configuration and its small-signal equivalent
model. The current source directly forces a DC bias
current of ID in the NMOS device. Since the bias
current is forced by a DC independent source, it
is zeroed out in the small-signal model, leaving an
open-circuit at the output node.

In the previous examples, we considered CS amplifiers where
MOSFET is coupled with a resistor. It is often more useful
to consider the active bias configuration, where the resistor is
replaced by an ideal current source. This removes R from the
small-signal model. Since the bias current is forced by an ideal
DC independent current source, in the small-signal model
contains an open-circuit at the MOSFET’s drain node. As a
result, this configuration achieves the highest possible gain
magnitude for a given MOSFET device. The gain and output
resistance are

Avo = −gm ro

Rout = ro

The gain magnitude of this configuration, gm ro, is commonly
referred to as the intrinsic gain of the MOSFET, since it is the
highest gain achievable with a single MOSFET device. When
the circuit is analyzed with no load attached, it is referred to as
the “open-circuit gain” and the subscript letter ‘o’ is added in
Avo to signify this.

+−VIN

vin

vIN

vOUT

ro,p

ro,n

VGP

Figure 115: NMOS active-bias common-source
amplifier configuration with PMOS bias device. The
PMOS device acts as a current source.

In practice, a nearly-ideal current source can be implemented
using a MOSFET device with a constant gate voltage. For
example, a PMOS device can be substituted in place of the
current source. The PMOS gate voltage, VGP, should be chosen
so that the device is biased in its saturation mode. In that
configuration, the PMOS device is insensitive to the voltage
at its drain terminal, so its constant gate voltage maintains a
constant bias current ID.

Since the PMOS device is not perfectly ideal, it contributes a
load effect due to its intrinsic resistance ro. In the small-signal
model, the NMOS and PMOS ro’s will appear in parallel, so the
output resistance and gain are slightly modified:

Rout = ro,n ‖ ro,p

Av = −gm Rout

By using a PMOS device the circuit’s gain is roughly cut in half
due to the interaction of ro’s. In general, an amplifier’s output
node is connected to two branches, one “going up” toward VDD

and another “going down” toward ground. The total output
resistance is taken as the parallel combination of equivalent
resistance looking up with the resistance looking down, i.e.
Rout = Rup ‖ Rdown.
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Common-Source with Source Degeneration

RS

ID

+−VIN
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vIN

vOUT
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gm vgs
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vgs = vin − vs

+

−

ro
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id = 0 A

ig = 0 A

is

Figure 116: NMOS active-bias common-source
amplifier with source degeneration resistor RS. The
effect of RS is to reduce the amplifier’s gain while
improving error tolerance in the bias point.

The active-bias CS amplifier is extremely sensitive to its bias
point. If the DC gate voltage is off by a small error, then the
circuit is easily driven to its rail voltages and rendered useless.
In order to relax the bias sensitivity, we can insert a degeneration
resistor under the source terminal.

To solve the gain for this configuration, we first observe that
the output node is open-circuited in the small-signal equivalent
circuit model, since DC bias current source was zeroed out. In
that case, the current flowing into the output branch must be
zero. If a portion of the circuit is enclosed by the dashed box
shown in Figure 116, then the total current flowing into the box
has to equal the total current flowing out of the box (this is a
version of Kirchoff’s current law). The MOSFET does not allow
any current at its gate terminal, so the gate current is zero. The
output terminal is open-circuited, so the drain current is also
zero. The only remaining branch is the source terminal, which
must be zero since there is no other route for current to flow
into the box. Since is = 0, there is no voltage drop across RS, so
the source voltage is also zero.

gm vs

RS

+− vout

vgs = 0− vs

+

−

ro

vs

is

is

Figure 117: Finding the output resistance for the
degenerated amplifier.

As a result of this analysis, the model for solving the gain of
this circuit is identical to the model in Figure 114, so the gain
must be exactly the same, Av = −gm ro. Where the models
differ is in the output resistance. To find Rout for this circuit, we
zero out the input signal and apply a test voltage at vout. Then
we solve for the current that flows through the output branch.
Since the output node is no longer open-circuited, a non-zero
current flows through the drain and source terminals, with
id = is = iout. Also, since vin = 0, the gate-source voltage is
vgs = −vs = −is RS. Based on these considerations, we obtain
the circuit shown in Figure 117.

To solve for the output resistance, we consider the voltage
drop across ro. Two downward currents are superimposed on
ro:

vout = vs + ro (gm vs + is)

= is RS + ro (gm is RS + is)

⇒ Rout =
vout

is
= RS + ro + gm ro RS

So although the active-bias open-circuit gain is the same when
source degeneration is present, the output resistance is much
higher. This should result in a more significant coupling effect
when a load is connected.
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Common-Source Amplifier with Passive Bias and Degeneration

RS

RD

+−VIN

vin

vIN

vOUT

Rdown = RS + ro + gmro RS

Rup = RD

Figure 118: NMOS CS amplifier with passive bias
and source degeneration.

In the passive-bias configuration, we can leverage our previous
analyses to solve the small-signal behavior without repeating
the entire process. This circuit can be viewed as a superposi-
tion of the active-bias open-circuit configuration with the bias
resistor RD applied as a load. The gain can be considered as the
loaded-gain of the active-bias version:

AvL = (−gm ro)
RD

RD + Rout

=
−gmroRD

RD + RS + ro + gmroRS

Another way of looking at it is that the resistance RD summa-
rizes the circuit’s “up” branch, and the open-circuit amplifier
summarizes the circuit’s “down” branch. The two branches can
be analyzed separately, and then joined together via a coupling
analysis. After coupling, the new overall output resistance is
R′out = Rout ‖ RD.

Common-Source Amplifier with PMOS Bias and Degeneration

RS+−VIN

vin

VGP

vIN

vOUT

Rdown = RS + ro,n + gmro,nRS

Rup = ro,p

Figure 119: NMOS CS amplifier with passive bias
and source degeneration.

When a PMOS device is used to supply the amplifier’s active
bias current, we can adopt the same approach as in the passive
case. We now consider the amplifier to be loaded by the ro of
the PMOS device:

AvL = (−gm ro,n)
ro,p

ro,p + Rout

=
−gmro,nro,p

RS + ro,n + ro,p + gmro,nRS

In both the passive and PMOS biased circuits, we make use of
the idealized amplifier model shown below.

vin

Rin → ∞

+−−gmro,nvin

Rdown

Rup

open-circuit amplifier model

Figure 120: Amplifier model separating the upper
bias portion (modeled as a load) from the lower
portion (modeled as an open-circuit amplifier
configuration).
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Consider a passive-biased common-source amplifier like the one shown in Figure 119. The NMOS
device has parameters k = 500 µA/V2, VTh = 0.5 V and λ = 0.05 V−1. The bias resistor is RD = 50 kΩ
and the degeneration resistor is RS = 20 kΩ. If the input offset voltage is VIN = 1.25 V, what is the
circuit’s gain?

To solve this problem, we first solve the DC operating point and then calculate the small-signal pa-
rameters. Referring back to the bias configurations studied earlier in the chapter, we see that this
circuit is already covered by the passive bias network analysis. In a previous example, we found that
the bias current should be ID = 22.5 µA. Then gm =

√
2kID = 150 µA/V2, ro = (λID)

−1 = 889 kΩ,
gmro = 133 V/V, and Rdown = 3.58 MΩ. The high intrinsic gain looks pretty promising, but the
resistive coupling effect is going to ruin it. Putting all this together, the amplifier’s loaded gain is

AvL = (−gmro)

(
RD

RD + Rdown

)
= −1.83 V/V.

With the large source degeneration resistance, the circuit does not make a very good amplifier.

If the degeneration resistance could be removed (while keeping the bias current the same), then the
output resistance would be a much smaller value of ro, and in that case the loaded gain would be
much better:

AvL = (−gmro)

(
RD

RD + ro

)
= −7 V/V.

Example 23 (Passive-biased CS amp with source degeneration).
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Benefits of source degeneration

0 2 4

0
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4

Figure 121: DC transfer characteristic of a CS ampli-
fier with no source degeneration. The amplifier will
not function if the input offset strays outside the red
box, leaving little tolerance for error.

From the preceding analysis, it sounds like source degeneration
is purely harmful, since it significantly reduces the gain. There
are three good reasons for understanding source degeneration:

1. It is sometimes an unavoidable feature of some circuits.

2. It models the coupling behavior when multiple MOSFET
amplifiers are folded together into a complex circuit.

3. It provides a looser error tolerance for biasing the common-
source amplifier.
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Figure 122: DC transfer characteristic of a CS am-
plifier with several values of source degeneration.
The degenerated amplifier is more forgiving of bias
errors, but has a flatter slope and therefore lower
gain.

Of these reasons, the third point is the most practical con-
sideration at this stage in our study of MOSFET amplifiers.
A high-gain CS amplifier can be difficult to successfully bias
in practice. Since the transfer characteristic is very steep, a
slight error can cause the amplifier to rail, making it useless.
By inserting a degeneration resistor, we can flatten the transfer
characteristic and make it more tolerant to bias error.

A collection of simulated DC transfer characteristics is shown
in Figure 122. The degeneration resistance is varied from zero
up to 20 kΩ. With increasing values of RS, two drawbacks are
visible. First, the gain is diminished, which is evident from the
flatter slope in curves with higher RS. Second, the output signal
range is diminished, since the transfer characteristic flattens out
at a higher voltage. This limits the minimum output voltage
that can appear, so we can’t produce a full 5 V rail-to-rail signal
in this example.

Using a bypass capacitor

RS

RD

+−VIN

vin

vIN

vOUT

CB

Figure 123: NMOS CS amplifier with passive bias,
source degeneration and bypass capacitor.

For applications where only high-frequency signals need to
be amplified, a win-win solution is possible by inserting a
bypass capacitor across the degeneration resistor. The bypass
resistor has the effect of shorting out RS when processing high-
frequency signals. But at DC, the capacitor has no effect on the
circuit.

At a given frequency f , the bypass capacitor CB behaves
approximately like a resistance of magnitude (2π f CB)

−1. At
higher frequencies this resistance tends toward zero, hence
“bypassing” RS. The amplifier’s gain will then tend toward the
loaded gain without degeneration:

AvL → −gmro

(
RD

RD + ro

)
.
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Netlist 8: DC sweep of common-source degeneration resistances

* Common-Source amplifier with source degeneration

.model ntype NMOS(KP=100e-6,VTo=0.5,LAMBDA=0.05)

VDD ndd 0 DC 5V

VIN ndc 0 DC 1V

vsig nsig 0 SIN(0 0.1 1k)

RDC ng ndc 1Meg

Cin nsig ng 10uF

RL nout 0 1Meg

Cout nd nout 10uF

M1 nd ng ns 0 ntype W=1u L=200n

RD ndd nd 50k

RS ns 0 1

.control

* Foreach loop to scan through RS values:

foreach RSval 0 500 1000 5000 10000 20000

alter RS = $RSval

dc VIN 0 5 0.05

end

plot dc1.nd dc2.nd dc3.nd dc4.nd dc5.nd dc6.nd

wrdata cs_degenerated_dc dc1.nd dc2.nd dc3.nd dc4.nd dc5.nd dc6.nd

.endc

.end

This example implements the NMOS common-source amplifier described in the SPICE netlist above,
with a passive bias resistor RD = 50 kΩ, a degeneration resistor RS = 20 kΩ, and a bypass capacitor
CB = 10 µF. With the bypass capacitor in place, the gain is close to −7 V/V as we predicted in exam-
ple 23. If you remove the bypass capacitor, you should notice that the gain drops to about −1.8 V/V
as predicted.

The circuit is highly tolerant of different DC input bias voltages. Try adjusting the DC gate voltage
source between 1 V and 1.8 V. The circuit continues to function throughout this range, while main-
taining a gain close to the −7 V/V target. Try repeating the simulations with RS and CB removed (i.e.
shorted out). The results will not be as robust for different gate offset voltages.

EveryCircuit Demonstration 34 (CS amplifier with bypass capacitor).

http://everycircuit.com/circuit/5841187846488064/nmos-common-source-amplifier-with-source-degeneration-
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Amplifier analysis: general principles

RS

Rdrain

Figure 124: General resistance into the drain terminal:
Rdrain = RS + ro + gmro RS.

We’ve now seen several different ways to configure the common-
source amplifier. All of these configurations can be unified into
a general-purpose small-signal analysis procedure. To analyze
any configuration, we only need the following information:

1. The ideal amplifier model is obtained by analyzing the open-
circuit gain of an active-bias configuration.

2. The ideal output resistance is equal to the equivalent resis-
tance looking into the corresponding terminal of the ideal
active-bias configuration.

3. To account for the circuit’s real bias source (whether passive,
PMOS, or something else), we consider the bias device to
be a load resistance which forms a voltage divider at the
amplifier’s output.

RD

Rsource

Figure 125: General resistance into the source
terminal: Rsource = RD+ro

1+gmro
.

This general framework is suitable for analyzing all MOSFET
amplifier configurations. To solve the terminal resistances,
we only need two general-purpose theorems that reveal the
resistance looking into the drain and source terminals.

gm vs

+−vs

RD

vgs = 0− vs

+

−

ro

vs

is

is

Figure 126: Model for solving the resistance looking
into the source terminal.

Resistance into the drain: In any configuration, we can
quickly solve Rdrain, the equivalent small-signal resistance look-
ing into the drain terminal of a MOSFET device. To do this, we
first summarize any circuitry present under the source terminal,
and treat it as a single equivalent resistance RS. Then the circuit
is reduced to the exact same model as the CS amplifier with
source degeneration. We found that

Rdrain = RS + ro + gmroRS

This result covers all possible cases. When the source terminal
is connected directly to ground, RS = 0, then Rdrain = ro. If
there is an ideal current source under the source terminal, then
RS → ∞, in which case Rdrain → ∞.

Resistance into the source: To find the resistance looking
into the source terminal, we summarize any circuitry present
above the drain as an equivalent resistance, RD. We then apply
a test voltage at the source and solve for the current that flows
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into the source terminal:

is =
vd
RD

vd = vs + ro (gmvs − is)

⇒ is (RD + ro) = vs (1 + gmro)

⇒ Rsource =
vs

is
=

RD + ro

1 + gmro
.

In the coming sections we will apply these general principles
to an expanding array of configurations.

Common-Gate amplifier configuration
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Figure 127: NMOS Common-Gate amplifier config-
uration with ideal active bias, and its small-signal
equivalent circuit model. The signal source is as-
sumed to have a series resistance of RS.

In the common-gate (CG) configuration, the input signal is
applied to the source terminal, the output is sampled from the
drain terminal, while the gate terminal is held at a constant
bias voltage. In the small-signal equivalent model, the gate
voltage is zeroed-out to small-signal ground, and the bias
current source is zeroed-out so that it becomes an open-circuit.
Since no current flows out of the open-circuited drain terminal,
there must also be no current flowing through RS, i.e. is = 0.
Therefore vs = vin. Then vout is determined by the voltage drop
across ro:

vout = vin + gmrovin

⇒ Avo =
vout

vin

= 1 + gmro.

The output resistance for this configuration is the resistance
looking into the drain, which we already know is:

Rout = Rdrain = RS + ro + gmroRS.

The input resistance is the resistance seen looking into the
source terminal. Since there is an ideal current source connected
above the drain, the effective resistance above the drain is
Rd → ∞, so for this configuration,

Rin = Rsource = ∞.

Passive-bias configuration: If the ID current source is re-
placed by a resistor RD, we can consider RD as a load resistance.
Then the amplifier’s gain is revised by considering the coupling
ratio:

AvL = (1 + gmro)
RD

RD + RS + ro + gmroRS
.
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Figure 128: NMOS Common-Gate amplifier with
capacitive input coupling to bypass RS.

Capacitive coupling: When the CG amplifier is used to
amplify AC signals, we can use a procedure similar to the
bypass method that we applied in the CS amplifier with source
degeneration. In this configuration we can similarly leverage RS

to provide a more tolerant bias point at DC, while bypassing RS

to mask its effect at higher frequencies.
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Figure 129: DC transfer characteristic of a CG
amplifier with different values of RS. A higher RS
provides a flatter characteristic, and is therefore more
tolerant to bias error.

An ensemble of DC transfer characteristics are shown in
Figure 129. The steepest curve corresponds to an RS near zero.
The steepest curve offers the best gain, but the flattest curve
offers the most tolerant bias point. By using capacitive coupling,
the circuit will “see” the flatter high-RS curve at DC, but will
“see” the steeper low-RS curve at high frequencies.

Input resistance: In some applications, we are specifically
interested in the input resistance coupling for the passive-bias
configuration. The CG input resistance is defined as the resis-
tance looking into the source terminal, Rsource, which depends
on the value of RD together with any load resistance that might
be present. This creates a tricky situation: we can either account
for RD via the input coupling OR account for it via the output
coupling. If we model input and output coupling effects at the
same time, RD will be double-counted.

vout

gm vin

+−vin

RD

vgs = 0− vs

+

−

ro

vs = vin

is

is

Figure 130: Short-circuit model for input-side
coupling analysis, with RS removed while RD
remains.

In our previous output-side analysis, we considered the open-
circuit analysis and later inserted RD as a load. In the input-side
analysis, we consider the short-circuit configuration with RS

removed, then insert it as a coupling resistance on the front side.
In that case, the solution changes a little:

Rin =
RD + ro

1 + gmro

Rout = RD ‖ ro

Avs =
RD

RD + ro
+ gm (RD ‖ ro)

AvL =

(
RD

RD + ro
+ gm (RD ‖ ro)

)
Rin

Rin + RS

=

(
RD

RD+ro
+ gm

RDro
RD+ro

)
(RD + ro)

(1 + gmro)
(

RD+ro
1+gmro

+ RS

)
=

RD + gmRDro

RD + ro + RS + gmroRS

= (1 + gmro)
RD

RD + ro + RS + gmroRS

The same result we obtained before.
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Consider a CG amplifier with passive-bias where RD = 50 kΩ, RS = 10 kΩ, VG = 2.5 V and VIN =

1.6 V. The NMOS device parameters are k = 500 µA/V2, VTh = 0.5 V and λ = 0.05 V−1, and the supply
voltage is VDD = 5 V. What gain and output resistance will be achieved in the series configuration (??)
and the bypass configuration (??)?
To begin with, we solve the DC operating point, then the small-signal parameters, and the open-
circuit characteristics of this amplifier:

VOV = VG −VS −VTh

VS = VIN + IDRS

ID =
1
2

kV2
OV =

1
2

k (VG −VTh −VIN − IDRS)

By defining x =
√

ID, we can express a quadratic equation:

R

√
k
2

x2 + x−
√

k
2
(VG −VTh −VIN) = 0

then solve using the quadratic formula:

ID =

(
−1 +

√
1 + 2kR (VG −VTh −VIN)

R
√

2k

)2

= 15.3 µA

Then the small-signal parameters are:

gm =
√

2kID = 123.6 µA/V

ro = (λID)
−1 = 1.3 MΩ

1 + gmro = 162.6 V/V

From this point, the two circuits will diverge in the value of Rdrain at higher frequencies. In the by-
pass configuration, RS is masked for AC signals, so Rdrain = ro. For the series configuration, however,
RS has a big effect:

Rdrain (series) = RS + ro + gmroRS = 2.9 MΩ

Then the gain for the two configurations is

AvL = (1 + gmro)

(
RD

RD + Rdrain

)
= 2.73 V/V (series version)

= 6.0 V/V (bypass version)

Example 24 (Common-gate configurations).



introduction to mosfets 143

This demonstration shows a basic common-gate amplifier with a passive bias resistor RD = 50 kΩ.
The NMOS device has the familiar characteristics: k = 500 µA/V2, VTh = 0.5 V and λ = 0.05 V−1. The
supply voltage is VDD = 5 V, the NMOS gate is biased at a constant VG = 2 V, and the input signal has
a DC offset of VIN = 1.1 V, and the input AC small signal vin has an amplitude of 100 mV. The input
signal has zero series resistance.

To determine the DC operating point and small-signal characteristics, we can start by directly calculat-
ing VOV since there is no resistor below the source terminal:

VOV = VG −VS −VTh

= VG −VIN −VTh = 0.4 V

Then the DC bias current, output offset, and small-signal parameters are:

ID =
1
2

kV2
OV = 40 µA

VD = VDD − IDRD = 3 V

VDS = VD −VIN = 1.9 V > VOV

gm = k VOV = 200 µA/V

ro = (λID)
−1 = 500 kΩ

Finally the gain and output resistance are

Avo = (1 + gmro)

(
RD

RD + ro

)
= (101 V/V)

(
50

550

)
= 9.18 V/V

Rout = RD ‖ ro = 45.45 kΩ

Now measure the amplitude of the output signal in EveryCircuit, and verify that the gain is a little
over 9 V/V, as predicted by our analysis.

As an exercise, try removing RD and replace it with an ideal current source (pointing down) sup-
plying 40 µA. Predict the effect this will have on the circuit, and verify your prediction in the Ev-
eryCircuit simulation (note: for this exercise you will need to reduce the amplitude of vin to 1 mV, and
carefully increase the DC offset to VIN = 1.11 V).

EveryCircuit Demonstration 36 (Common-Gate configuration).

http://everycircuit.com/circuit/4895047554695168


144 microelectronics

This circuit implements the passive-bias CG configuration described in example 24. The bypass
version is shown. Run the transient simulation and verify that the results align with the predictions
from example 24. As an exercise, remove the bypass capacitor and reposition the AC input in series
between the DC offset and RS. Repeat the simulation, and verify that the gain decreases to a value
close to what was predicted.

EveryCircuit Demonstration 38 (Common-Gate bypass configuration).

http://everycircuit.com/circuit/5897731493593088
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Source Follower configuration

ID

vOUT

+−VIN

vin

vIN

vin − vout ro

vout

Figure 131: Source follower configuration with ideal
active bias, and its small-signal equivalent model.

If the input signal is applied to the gate while the output is sam-
pled from the source terminal, the circuit is called a common-
drain configuration, more popularly known as a source follower
since the source terminal “follows” the gate signal with a small-
signal gain close to one.

For the ideal active-biased open-circuit configuration, the
small-signal model is quite simple. We see immediately that
vout = gmro (vin − vout), so the open-circuit gain is simply

Avo =
gmro

1 + gmro
.

The output resistance is a little more subtle. Since the resistance
is looking into the source terminal, we should have Rout =

Rsource with RD = 0. Then

Rout =
ro

1 + gmro
≈ 1

gm
.

The 1/gm approximation is accurate when gmro � 1, which is
usually true.

Passive-loaded configuration: If a resistor RS is used instead
of the ideal current source, we can treat it as a load applied to
the ideal open-circuit configuration. Then the loaded gain is

AvL =
gmro

1 + gmro

gmRS
1 + gmRS

≈ gmRS
1 + gmRS

This approximation applies when gmro � gmRS, which is often
the case when using a passive bias. Finally the output resistance
is

Rout =
1

gm
‖ RS.

This tends to be much lower than the output resistance of the
CG and CS configurations. For that reason, the SF configuration
can be useful as an output buffer to drive small-resistance loads
without suffering signal attenuation due to output resistance
coupling.
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Suppose a CS configuration has an open-circuit gain of Avo = 20 V/V an output resistance Rout =

500 kΩ, and needs to drive a load RL = 10 kΩ. If the CS amplifier is connected directly to the load,
the gain will be attenuated so that AvL = 20 × 10/(10 + 500) = 0.392 V/V. Now suppose a SF
configuration is inserted in between the CS output and the load resistor, and the SF circuit has gm =

200 µA/V, ro = 500 kΩ, and the load itself acts as a passive bias resistance of RS = 10 kΩ. Then the
overall gain of this two-stage circuit will be

AvL = 20 V/V
(

gmro

1 + gmro

)(
gmRL

1 + gmRL

)
= 19.99 V/V,

so there is almost no attenuation at all.

RL RL

vIN vIN

Example 25 (Source Follower output resistance).
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Biasing MOSFET amplifiers

In the previous examples, we considered the DC solution for
passive resistor-biased amplifier configurations. Passive bias
designs are convenient in that they can be fully analyzed, and
can be made tolerant to bias errors and parametric variation.
But there are several drawbacks to passive-bias designs:

• Bias resistors load the amplifier and significantly lower the
gain.

• Due to the DC voltage-drop across each bias resistor, the
dynamic range is limited; for example, with VDD − 5 V, a
passive-biased CS amplifier may deliver an output amplitude
no greater than 1 V.

• For integrated circuit applications, resistors are physically
large and expensive to fabricate on-chip.

To address these limitations, there are two major alternatives:
current-mode biasing and feedback biasing. There are other,
more advanced, bias solutions, but for now we will focus our
attention on these two methods.

Current-mode biasing

ID lo
ad

iOUT

vGS vGS
++

− −

Figure 132: MOSFET current mirror. The input
current (on the diode connected side) is copied at the
output branch.

One of the most important bias strategies is based on the cur-
rent mirror configuration shown in Figure 132. The current mir-
ror consists of two devices, both biased in saturation, connected
with the same gate and source voltages. Since the saturation
current depends only on vGS, and both devices have the same
vGS, they should both have the same current. On the input side,
a current is forced into the drain terminal of a diode-connected
device. The diode connection regulates vGS to support the forced
current ID. On the output side, the device can be used as a
current source that delivers iout = ID to a load connected at its
drain terminal.

Rref

am
pl

ifi
er

ID

vGS1 vGS1
++

− −

|vGS2||vGS2|
−−

+ +

Figure 133: Example showing two current mirrors. In
the NMOS mirror, the reference current is setup by
the interaction between R and the diode-connected
NMOS device. The PMOS mirror then generates a
new copy of the reference current, which is used to
bias an amplifier.

Current mirrors can be used to generate bias currents, and
to source multiple copies of a reference current. This can be
quite useful for amplifier biasing. In the structure shown in
Figure 133, the reference current (i.e. the input) is initially
determined by a resistor R. The current in this configuration
was previously found to be

ID =

(
−1 +

√
1 + 2kR (VDD −VTh)

)2

2kR2 .
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Consider the CS-SF configuration from the previous example. By using current mirrors, we can
convert this to an active-bias configuration, replacing the resistors with MOSFETs as shown below.

MCS

MSF

ID

ID

+−VIN

vX

vOUT

vin

Device MCS is in a common-source configuration with output vX.
Device MSF is in a source-follower configuration with input vX and
output vOUT. Both devices are biased with the same DC current, ID.
Capacitive coupling is used to separate the DC gate offset for MCS

Design problems:

• Generate the correct offset voltage at VIN.

• Implement the ID current sources.

In the expanded circuit below, current mirroring is used to generate both the VIN offset voltage and
the current sources for ID. There are two current mirrors, an NMOS mirror producing three copies of
ID via vGS1, and a PMOS mirror producing one copy of ID via |vGS2|.

Rref

ID

vGS1 vGS1
++− −

|vGS2| |vGS2|−−+ +

MCS

MSF

vin

vout

ID

To keep MCS in satu-
ration, it’s DC current
should be equal to ID. If
all the NMOS devices
are matched, and if they
all have the same VGS,
then they should all have
the same current. Hence
by setting VIN = vGS1,
the current mirror pro-
vides both the gate offset
voltage and the current
sources.

Example 26 (Current-mirror active bias).
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Symmetry in current mirrors

Rref

MCS

vY vX

ID

vGS1 vGS1
++

− −

|vGS2||vGS2|
−−

+ +

Figure 134: Two current mirrors used to bias a
common-source amplifier. By symmetry, we can infer
that vX = vY .

When using a current-mirror bias network, the output signal’s
DC offset is not obvious. We usually want an amplifier’s DC
offset to be balanced in the center of its operating range, but
how can we control this? The answer lies with symmetry.

In the two-mirror bias structure shown in Figure 134, the
NMOS mirror is used to set the gate offset voltage, and the
PMOS mirror is used to source the active bias current. For this
setup to work, all devices must be perfectly matched, i.e. they
must have the same physical parameters (k, VTh, λ, etc) and the
same geometry (W and L). They must furthermore all operate
in saturation, so that the sensitivity to their drain voltages is
minimized. Then they should all have the same device current,
ID.

Using the square-law device equation, we can solve for
all the voltages in this circuit except for one: vX. To obtain
a solution for vX, we note that the PMOS devices have the
exact same gate and source voltages, and the same device
current. In that case, we may make an argument from physical
symmetry: if two devices are known to have exactly the same
electrical state in all variables except one, then they must
also be matched in the remaining unknown variable. In other
words, vX = vY = VDD − |vGS2|. In the next example, we find that
this isn’t always the best bias point.

Suppose the circuit of Figure 134 is constructed with the following parameters: kn = 5 mA/V2, kp =

3 mA/V2, VThN = VThP = 0.5 V, λn = 0.01 V−1, λp = 0.05 V−1, Rref = 50 kΩ and VDD = 5 V. What is the
circuit’s complete DC operating point?

Using the previous analysis of the diode-connected MOSFET, we calculate ID and then vGS1 and vGS2

as

ID =

(
−1 +

√
1 + 2kR (VDD −VTh)

)2

2kR2 = 86.3 µA

VOV1 =

√
2ID
kn

= 0.186 V

VGS1 = VOV1 + VThN = 0.686 V

VOV2 =

√
2ID
kp

= 0.24 V

|VGS2| = VOV2 + VThP = 0.74 V

Then the value of vY and vX is
vy = vX = VDD − |vGS2| = 4.26 V

Example 27 (Output offset with current-mirror bias).
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In the result from Example 27, notice that the output offset
is very close to the maximum output voltage. It is near the top
of its range. That means the positive leg of an output signal
will be clipped. To resolve this problem, we need to break the
symmetry by a small amount. One option is to slightly increase
the k of device MCS (by increasing its width), so that its device
current is slightly greater than ID. That will pull down the
output offset. A second option is to slightly decrease the gate
bias voltage at MCS. Both of these methods are risky, since it
can be challenging to calculate the exact variation required. Real
MOSFETs may deviate slightly from our model equations, and
manufacturing variations can result in physical parameters that
are slightly different from the ones on the data sheet.

This demonstration implements the current-mirror bias network from Example 26. In order to correct
for the output bias problem discussed in Example 27, the width of device MCS is slightly increased.
Based on the parameters from Example 27, we found that the bias current is ID = 86.3 µA. Continu-
ing this analysis, we find the small-signal parameters are

gm =
√

2kn ID = 929 µA/V

ro,n = (λn ID)
−1 = 231.7 kΩ

ro,p = (λp ID)
−1 = 115.9 kΩ

Then the expected gain is AvL = −gm(ro,n ‖ ro,p) = −71.77 V/V.

In the demonstration, since MCS is slightly wider, its k increases to 5.85 µA/V2. Using an ammeter
in the simulation, we can see that this increases the bias current to about 110 µA, hence gm becomes
1.13 mA/volt, ro,n = 181.8 kΩ and ro,p = 90.9 kΩ. Then the loaded gain should be −68.5 V/V. In the
simulation, the gain is observed to be −83.8 V/V, somewhat higher than the prediction.

As an exercise, try setting the width of MCS to 10, so that it matches the widths of all other devices
in the circuit. You should see that the output waveform saturates due to the output offset being near
the upper edge of saturation for the PMOS device.

EveryCircuit Demonstration 40 (Two stage amp with current mirror bias).

http://everycircuit.com/circuit/5216596954447872
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Feedback biasing
−
++−V?

X

LPF

vX

vIN

Figure 135: An error amplifier loop is used to
regulate the DC offset at VX so that it stays close
to the desired value V?

X . This configuration adapts
to changes in the gate offset at VIN. Note that the
feedback signal is connected to the op amp’s non-
inverting input. This is because the PMOS device acts
as an inverting amplifier, so there is a net negative
sign around the feedback loop.

In order to achieve a more reliable bias solution that is highly
tolerant to both manufacturing variation and model inaccuracy,
we can exploit the power of negative feedback. Since our goal is
to achieve an output bias near the center of its dynamic range,
we can directly enforce this condition by using an error ampli-
fier loop like the one shown in Figure 135. The idea is that if VX

deviates from the desired value, V?
X , then the amplifier responds

by pushing VX strongly in the opposite direction.

MCS1

MCS3

MCS2

MSF2

(v−)

(v+)

vz+−Vreg

LPF

vX

vIN

Figure 136: A differential error amplifier made by
folding together a PMOS common-source amplifier
with a PMOS source-follower. In the small-signal
model, we see that the SF device loads the CS
configuration, so that the overall gain is close to one.

At this point you may ask, “if I have an op amp, why don’t
I just use it as the amplifier instead of using it to bias a MOS-
FET circuit?” In practice, we don’t need to use a full fledged
op amp for this bias configuration. A simpler MOSFET-based
differential amplifier is adequate. There are several configura-
tions that can be used for error amplification. One example is
the circuit shown in Figure 136, in which a CS configuration
is superimposed onto a SF configuration. When two amplifier
stages are superimposed in this manner, it is referred to as a
folded configuration.

The new circuit in Figure 136 now has three devices that will
act as CS amplifiers. The primary amplifier is NMOS MCS1, and
the error amplifier bias network has PMOS amplifiers MCS2

and MCS3. In the small-signal domain, MCS2 has an open-circuit
gain of −gmro, but is loaded by the 1/gm source resistance of
MSF2. So the loaded gain of MCS2 is

ACS2 = −gmro

(
1/gm

1/gm + ro

)
≈ −1,

where the approximation is due to the fact that ro � 1/gm,
so the 1/gm term is removed from the denominator, allowing
both gm and ro to be canceled. Next, since MSF2 is a source
follower, its gain is approximately one. So the small-signal
voltage arriving at the gate of MCS3 is vY ≈ (v+)− (v−). Finally
the error signal vy is amplified by MCS3 with a gain of −gmro,
which supplies the amplification in this feedback loop.

The purpose of the error amplifier is to make small adjust-
ments in the current of MCS3 in order to precisely control the
offset voltage at vX. The device current in MCS3 should still be
very close to ID, and its gate voltage should therefore be very
close to

vZ ≈ VDD −VThP −
√

2ID
kp

,

where ID is the DC bias current in MCS1 and MCS3. Further-
more, the DC currents in MCS2 and MSF2 should be equal to
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each other, so

1
2

kp
(
VDD −Vreg −VThP

)2
=

1
2

kp (vZ − vX −VThP)
2

⇒
(
VDD −Vreg −VThP

)
=

(
VDD −VThP −

√
2ID
kp
− vX −VThP

)
.

So, in order to achieve vX = V?
X, we should set the control

voltage at

Vreg = V?
X + VThP +

√
2ID
kp

.

If kp � ID, then
Vreg ≈ V?

X + VThP.

The feedback bias methods discussed here are introductory.
A variety of more sophisticated bias techniques can also be
used, but are beyond the scope of this chapter.

This example modifies the design from Example 27 to use feedback bias with an ideal op amp as the
error amplifier, like the solution shown in Figure 135. In this configuration, all devices are matched,
so there is no need to manipulate the width of MCS.

EveryCircuit Demonstration 42 (Two-stage amplifier with ideal feedback bias).

This example modifies the design from Example 27 to use feedback bias with an error amplifier like
the one from Figure 136. In this design, the control voltage is Vreg = 3.0 V, corresponding to V?

X + VThP.
All NMOS devices are matched, and the error amplifier feedback is achieved without using an op
amp.

EveryCircuit Demonstration 44 (Two-stage amplifier with PMOS feedback bias).

http://everycircuit.com/circuit/5079743861358592
http://everycircuit.com/circuit/4806078208933888
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Frequency response of CMOS amplifiers

vsig

Rsig

RinCin

+
− Avovin

Rout

Cout
RL

Figure 137: High-frequency amplifier model showing
input and output capacitances.

In this section we will introduce the basic concepts of CMOS
amplifier frequency response and bandwidth. All circuits have
a maximum operating frequency, beyond which they exhibit
rapid signal attenuation. Frequency limitations arise from the
parasitic capacitances that exist on every node in a physical
circuit. Capacitance arises from the wire connections at a node,
from the substrate and insulation materials of a wire, a printed
circuit board or chip, and from the internal junction physics of
the MOSFET itself. In this section, we will focus on the analysis
of capacitive effects and not concern ourselves with calculating
specific capacitance values around MOSFET devices (we will
assume the capacitance values are known or given).

In an amplifier circuit, it is usually sufficient to assume that
a “lump” capacitance is connected to each node that summa-
rizes all the neighboring parasitic effects. We therefore insert
lump capacitors connected from the input and output nodes to
ground, called Cin and Cout, respectively. By representing these
capacitors in the Laplace domain, we can treat them as part of
the input and output impedances, and their effect is captured
by the resistor-divider coupling ratios at the input and output
nodes. Then the amplifier’s frequency response is

Av(s) = Avo

(
Rin ‖ 1

sCin

Rsig + Rin ‖ 1
sCin

)(
RL ‖ 1

sCout

Rout + RL ‖ 1
sCout

)

= Avo

(
Rin

Rsig + Rin

)(
RL

RL + Rout

)
×
(

1
1 + s(Rsig ‖ Rin)Cin

)(
1

1 + s(Rout ‖ RL)Cout

)
This implies there are two poles:

ωp1 = [Cin (Rin ‖ Rsig)]
−1

ωp2 = [Cout (Rout ‖ RL)]
−1

It will often be the case that one pole is much larger than the
other. In that case may consider the smaller pole to be domi-
nant, and treat the circuit as a one-pole system governed by the
dominant pole.
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Frequency response of the common-source configuration

ID

Cin

Rsig

vin Cout RL

Cfb

Figure 138: Common-source configuration showing
input and output capacitances. In some cases there
may be a feedback capacitor Cfb, which can affect the
bandwidth if the input pole is dominant.

The common source configuration benefits from an infinite
input resistance, so the input pole is determined solely by Rsig

and Cin. The output pole is quite sensitive to the amplifier’s
output and load resistances.
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Figure 139: Simulated transfer functions for a
CS configuration with input-dominant pole for
Cin = 1 pF. Each curve represents a different Rsig,
starting from 100 Ω and increasing by 5× up to
312.5 kΩ. The cutoff frequency varies from the order
of GHz down to a few hundred kHz.

Input-dominant pole. If Rsig is significant, then the input
node may dominate the frequency response. In that case, the
circuit’s cutoff frequency is approximately ωin ≈ (RsigCin)

−1.

−Avvin vout

Cfb

iin iout

Figure 140: Simplified circuit model for analyzing the
Miller effect.

Miller effect. If the input pole is dominant, then it may be
necessary to account for any feedback capacitance, Cfb, that
may bridge between the input and output terminals. In practice
feedback capacitances are usually much smaller than the lump
capacitances at the input and output terminals. Due to the
negative feedback path in the common-source configuration, the
effect of Cfb is amplified, and may alter the frequency response.

The Miller effect appears in the small-signal equivalent
impedance seen looking into the input terminal. Using the
simplified circuit model in Figure 140, we find that

vout = −Avvin

iin = (vin − vout) sCfb = (vin + Avvin) sCfb

⇒ Zin =
vin

iin
= [(1 + Av) sCfb]

−1

This result shows that the effective capacitance is (1 + Av)Cfb,
i.e. the feedback capacitor is “amplified” by the gain of the
inverting configuration. A similar analysis shows that there is
no such effect on the output side.

Thanks to the Miller effect, in a high-gain amplifier a small
feedback capacitance could prove to dominate the bandwidth.
Sometimes this is a nuisance, but it can also be desirable for
special applications.

Output dominant pole. If Rout ‖ RL is very large, and Rsig is
comparatively small, then the output pole will tend to dominate
the frequency response. In that case, it is sometimes desirable
to load the amplifier with a smaller RL, in order to increase the
bandwidth. Since this also decreases the amplifier’s gain, there
will be a strong tradeoff between gain and bandwidth.

Gain/Bandwidth Tradeoff. For the output-dominant case,
the tradeoff between gain and bandwidth manifests in multiple
ways. When using a small load resistance, RL � Rout, the
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tradeoff is clear:

AvL = Avo

(
RL

RL + Rout

)
≈ Avo

(
RL
Rout

)
fc = [2π(Rout ‖ RL)Cout]

−1

≈ [2πRLCout]
−1

We see that there is a one-to-one exchange between gain and
bandwidth. In other words, the gain-bandwidth product is
constant: GBW = Avo/(2πRoutCout).

ID

Cout

vIN

vOUT

Figure 141: Active-bias CS configuration, when the
output pole is dominant, shows a strong gain/BW
tradeoff: AV ∝

√
ID , whereas fc ∝ I−1

D .

For a larger load, or when no resistive load is present, we
also see the tradeoff as a property of the bias current. The
amplifier’s open-circuit gain is

Avo = −gmro

= −
(√

2kID

)( 1
λID

)
= −

√
2k

λ2 ID

Meanwhile the cutoff frequency is

fc = (2πRoutCout)
−1

=
λID

2πCout

As a result, a higher ID means higher bandwidth but lower
gain. To put it another way, a high-bandwidth amplifier con-
sumes more power and has less gain than a low-bandwidth
amplifier.

R

Cout

R

vIN

vOUT

Figure 142: Passive-bias CS configuration, when the
output pole is dominant, shows a similar gain/BW
tradeoff: AV ∝

√
R, whereas fc ∝ R−1.In the case of a passive-biased CS amplifier, we again see the

same tradeoff. Suppose the amplifier has a source degeneration
resistor such that RS = RD with a source bypass capacitor, and
the gate offset is at VDD/2. Then, using the quadratic formula,
we find that the DC solution, open-circuit gain, and bandwidth
are

ID =

(
−1 +

√
1 + 2kR (VDD/2−VTh)

R
√

2k

)2

≈ VDD/2−VTh

R
Avo ≈ −gmR = −

√
2kIDR

≈ −
√

2kR (VDD/2−VTh)

fc = (2πRCout)
−1
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So once again we see the same tradeoff between gain and
bandwidth. This scenario was simulated using Listing 10 with
results shown in Figure 143. The observed gain and −3 dB
bandwidth are close to what is predicted by our analysis.
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Figure 143: Simulated transfer functions for the CS
configuration from Figure 142. The NMOS device
has k = 500 µA/V2, VTh = 0.5 V, VDD = 5 V and
VIN = 2.5 V. R is varied from 5 kΩ up to 100 kΩ.

The table below summarizes the results. From the data, we
see that the prediction is more accurate for larger R. The netlists
used to simulate the input-dominant frequency response and
the gain-bandwidth tradeoff are shown after the data table.

Predicted Simulated
R (kΩ) ID (µA) Av (dB) fc (MHz) ID (µA) Av (dB) fc (MHz)

5 400 7 31.8 223 8 32

10 200 10 15.9 131 11.6 15.7
25 80 14 6.4 61 16 12.7
50 40 17 3.18 33 19.5 3.7

100 20 20 1.59 17.5 22.7 1.86

Netlist 9: AC simulation of CS configuration

* Common-Source amplifier with source degeneration

.model ntype NMOS(KP=100e-6,VTo=0.5,LAMBDA=0.05)

VDD ndd 0 DC 5V

VIN ndc 0 DC 2.5V

vsig nsig 0 DC=0 AC=1 SIN(0 0.01 1k)

Rsig nsig nin 10

RDC ng ndc 1Meg

CC1 nin ng 10uF

Cin ng 0 1pF

RL nout 0 1Meg

CC2 nd nout 10uF

Cout nd 0 1fF

M1 nd ng ns 0 ntype W=1u L=200n

RD ndd nd 50k

RS ns 0 50k

CS ns 0 1uF

.control

* INPUT DOMINANT CASES:

* Foreach loop to scan through RSig values:

foreach RSigval 100 500 2500 12500 62500 312500

alter Rsig = $RSigval

AC dec 10 10 10G

end

* OUTPUT DOMINANT CASES:
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* Foreach loop to scan through Cout values:

alter Rsig=10

foreach Coutval 10f 50f 250f 1.25p 6.25p 31.25p 10p

alter Cout = $Coutval

AC dec 10 10 10G

end

plot db(ac1.nd) db(ac2.nd) db(ac3.nd) db(ac4.nd) db(ac5.nd) db(ac6.nd)

plot db(ac7.nd) db(ac8.nd) db(ac9.nd) db(ac10.nd) db(ac11.nd) db(ac12.nd)

.endc

.end

Netlist 10: Gain/BW tradeoff in CS configuration

* Common-Source amplifier gain/bw tradeoff

.model ntype NMOS(KP=100e-6,VTo=0.5,LAMBDA=0.05)

VDD ndd 0 DC 5V

VIN ndc 0 DC 2.5V

vsig nsig 0 DC=0 AC=1 SIN(0 0.01 1k)

Rsig nsig nin 10

RDC ng ndc 1Meg

CC1 nin ng 10uF

Cin ng 0 1pF

RL nout 0 1Meg

CC2 nd nout 10uF

Cout nd 0 1pF

M1 nd ng ns 0 ntype W=1u L=200n

RD ndd nd 50k

RS ns 0 50k

CS ns 0 1uF

.control

* Sweep R values to see Gain/BW tradeoff:

foreach Rval 5k 10k 25k 50k 100k

alter RD=$Rval

alter RS=$Rval

DC VIN 0 5 0.1

AC dec 10 10 10G

set gm=@m1[gm]

set rv=$Rval

let av=$gm*$rv

let avp=sqrt(2*5e-4*$rv)

let avdb=20*log10(av)

let fc=1.0/(2*3.1415*$rv*1e-12)

echo $rv

print @m1[gm] @m1[id] av avp avdb fc

end
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plot db(ac1.nd) db(ac2.nd) db(ac3.nd) db(ac4.nd) db(ac5.nd)

wrdata cs_gbw db(ac1.nd) db(ac2.nd) db(ac3.nd) db(ac4.nd) db(ac5.nd)

.endc

.end
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Figure 144: The NPN BJT device, showing its be-
havior in the active mode (when vBE ≈ 0.7 V and
vCE > 0.3 V). In this mode, the device can be de-
scribed as a current amplifier with constant gain
β.

The bipolar junction transistor was the first practical transistor
device for mass production, and defined the semiconductor
industry from the 1950s into the 1980s. Today, BJTs are not as
widespread as MOSFETs, but are still very important for niche
applications. Some areas where BJTs excel include high-voltage
applications, and radio-frequency power amplifiers, where
BJTs are able to drive antennas and transmission lines with
very good linearity and, hence, low distortion. BJTs also have a
high transconductance, and it is usually easier to make a good
discrete BJT amplifier, whereas MOSFETs may need several
devices in order to achieve a good bias configuration, making
them more suited for integrated circuit designs.
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Collector

vE

Emitter

vB
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iB iC = βiB = αiE

iE = iB + iC

Figure 145: The PNP BJT device, showing its be-
havior in the active mode (when vEB ≈ 0.7 V and
vEC > 0.3 V). The PNP device’s behavior is comple-
mentary to the NPN.

The chief drawbacks to BJT devices are high power consump-
tion (BJT bias currents must usually be on the order of 1 mA
to 100 mA), and comparatively high voltage overhead (unlike
MOSFETs, the BJT’s overdrive voltage is not adjustable and
cannot be reduced for low-voltage applications). In addition,
BJT devices cannot be miniaturized to nano-scale dimensions,
so they cannot achieve the same performance enhancements or
cost improvements that come with MOSFET scaling. Lastly, BJT
devices pass current through their base terminals (comparable
to the MOSFET’s gate), which makes them inefficient for logic
circuits, and complicates amplifier analysis and design.

BJTs are built out of PN junctions (diodes), and normally
have three operating modes corresponding to the diode states: Active Mode Summary:

iB = IS exp
(

vBE

nUT

)
iC = βiB

= αiE

α =
β

β + 1

• cuttoff: both junctions are not forward biased, i.e. vBE < 0.4 V
and vCB > −0.4. Note that the junctions do not have to
be reverse biased; a very weak forward bias is sufficient
to shutoff the junction for most applications. This mode
roughly corresponds to the MOSFET’s cutoff mode, and is
the appropriate OFF mode for switching circuits.

• active: emitter-base junction forward biased, vBE ≈ 0.7 V,
collector-base junction not forward biased, vCB > −0.4 V.
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Note that these conditions imply that vCE > 0.3 V. In this
mode, the base-current is defined by the forward-bias diode
equation, iB = IS exp (vBE/nUT), and the collector current
is iC = βiB, where β is the device’s current gain, n is the
forward emission coefficient (usually close to 1.0), UT is
the thermal voltage (26 mV at room temperature), and IS

is a scale current on the order of pA. This mode roughly
corresponds to the MOSFET’s saturation mode, and is the
appropriate DC bias mode for amplifier circuits.

• saturation: both junctions are forward biased, vBE ≈ vBC ≈
0.7 V. This mode roughly corresponds to the MOSFET’s triode
mode, and is the appropriate ON mode for use in switching
circuits.

N

P

N

Collector

Emitter

Base

P

N

P

Emitter

Collector

Base

Figure 146: Physical concept of the BJT device. By
applying a forward bias across the base-emitter
diode, a proportionally larger current is induced
between the collector and emitter.

In most of our designs, the BJT will used as an amplifier,
and will be operated in its active mode. In atypical situations,
there are two additional modes that may arise in BJT circuits:

• Reverse active: when the collector and emitter terminals
are swapped, the device can be used with the base-collector
junction in forward bias while the base-emitter junction is
not forward biased, i.e. vBC ≈ 0.7 V and vEC > 0.3 V. In this
configuration, the device functions similarly to the forward
active mode, but with a much smaller current gain, β. This
can easily happen by accident when connecting discrete
devices in lab experiments, and highlights a key difference
between BJTs and MOSFETs: whereas MOSFETs are often
symmetric devices, BJTs are not. You cannot interchange
the collector and emitter terminals.

• Avalanche breakdown: since the BJT is built from diode
junctions, reverse-breakdown can occur in one or both of
the junctions. The breakdown voltages are usually large
enough that they are not encountered in ordinary BJT circuits.
In some applications, a BJT can be deliberately forced into
avalanche breakdown, which can be useful for high-speed
switching of large currents as may be needed in pulse-based
instrumentation or radio frequency transmitters. When a BJT
is operated in its avalanche breakdown mode, it is referred
to as an avalanche transistor. Some specialty devices may be
built specifically for avalanche operation, but ordinary BJTs
can also be operated in the avalanche mode.
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DC passive bias configurations

RC

RE

RB1

RB2

VCC

VB

VC

VE

Figure 147: Voltage-divider bias configuration.

BJTs are primarily used as amplifiers, so we will consider active-
mode bias configurations. Since the device is extremely sensi-
tive to the base-emitter voltage, it is usually necessary to place
resistors in series with the base and emitter terminals. These
resistors provide “elastic” voltage drops that help maintain an
appropriate vBE.

Two common passive bias configurations are shown in Fig-
ure 147 and Figure 148. In both cases, we will begin by choosing
a desired bias current for IE (usually on the order of 1 mA),
assume that vBE ≈ 0.7 V, and follow a Kirchoff voltage loop
across the emitter-base junction. The values of RC and RE can
be chosen based on gain analysis (which will be addressed later;
they will typically be on the order to 10 kΩ), so our bias task
will be to calculate the RB values.

RC

RE

RB

VCC

VB

VC

VE

Figure 148: Feedback bias configuration.

Voltage-divider bias: for the configuration in Figure 147,
Ohm’s Law indicates that VE = IERE, and the Kirchoof voltage
loop indicates that VB = IERE + vBE = VE + 0.7 V. The resistors
RB1 and RB2 should be chosen to achieve this voltage. If we ass-
sume that IB is small enough that we can ignore its contribution
to the voltage divider, then

VCC
RB2

RB1 + RB2
= IERE + 0.7 V

RB2 = RB1
VB

VCC −VB

On the collector side, VC = VCC − ICRC. The circuit should be
biased so that the minimum expected voltage at vC is at least
0.3 V greater than VE.

Feedback bias: for the configuration in Figure 148, Ohm’s
Law again indicates that VE = IERE. In this case, we take the
Kirchoof voltage loop from the emitter, to the base, then across
the collector and up to VCC. Note that the feedback connection
merges the base current together with the collector current, so
the total current in RC is IE. Then

VCC = IERE + vBE + IBRB + IERC

⇒ VCC = IERE + 0.7 V +
IERB
β + 1

+ IERC

⇒ RB =
β + 1

IE
(VCC − 0.7 V− IE (RE + RC))
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A voltage-divider network like the one in Figure 147 has VCC = 5 V, RC = 2 kΩ, RE = 0.5 kΩ,
RB1 = 10 kΩ, and the device has β = 100 A/A. If the desired emitter current is 1 mA, what is the cor-
rect value for RB2?

Based on the given parameters, we can directly calculate VE = IERE = 0.5 V, and VB = VE + 0.7 V =

1.2 V. Then

VCC
RB2

RB1 + RB2
= 1.2 V

⇒ VCCRB2 = 1.2 V (RB1 + RB2)

⇒ RB2 = RB1
1.2 V

VCC − 1.2 V

= 3.16 kΩ

Example 28 (Voltage divider bias).

A voltage-divider network like the one in Figure 148 has VCC = 5 V, RC = 3 kΩ, RE = 0.5 kΩ, and the
device has β = 100 A/A. If the desired emitter current is 1 mA, what is the correct value for RB?

As in Example 28, we can directly calculate VE = IERE = 0.5 V, and VB = VE + 0.7 V = 1.2 V. Then

RB =
β + 1

IE
(VCC − 0.7 V− IE (RE + RC))

= 80.8 kΩ.

On the collector side, we may estimate the collector voltage as VCC − IERC = 5 V− 1 mA× 3 kΩ = 2 V.

Example 29 (Feedback bias).
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BJT small-signal characteristics

ve

gmvbe ro

vc

rπ

vb

icib

ie

Figure 149: Standard ‘Π’ model of the BJT device.
The base-emitter diode induces a differential resis-
tance named rπ .

The small-signal characteristics are obtained using the same
differential techniques that we employed for MOSFET devices.
As with MOSFETs, the most important characteristics are the
transconductance gain gm and the intrinsic resistance ro. Un-
like MOSFETs, the BJT also has a resistance associated with the
base emitter junction, called rπ .

We first obtain the transconductance by applying the differen-
tial definition:

gm ,
d iC

d vBE

∣∣∣∣
DC

=
d

d vBE
βIS exp

(
vBE
nUT

)
=

1
nUT

βIS exp
(

vBE
nUT

)∣∣∣∣
DC

=
IC

nUT
.

Small-Signal Summary:

gm =
IC

nUT

ro =
VA

IC

rπ =
β

gm

Early effect resistance: the BJT’s ro parameter is due to a
phenomenon called the Early effect, which is very similar to
Channel Length Modulation in MOSFET devices. The Early
effect accounts for a slight sensitivity between the collector
current and the collector-emitter voltage:

iC = βIS exp
(

vBE
nUT

)(
1 +

vCE
VA

)
where VA is called the Early voltage, with units of V. The Early
effect is algebraically identical to CLM if we recognize that
VA = λ−1. Then the ro resistance is

ro ,
[

d iC
d vCE

∣∣∣∣
DC

]−1

=

[
d

d vCE
βIS exp

(
vBE
nUT

)(
1 +

vCE
VA

)∣∣∣∣
DC

]−1

=
VA
IC

.

Lastly, the differential base-emitter resistance is defined as

rπ ,
[

d iB
d vBE

∣∣∣∣
DC

]−1
.

Recall that iB = iC/β. In that case this derivate is the same
as the one that defines gm, except for the constant β factor.
Therefore rπ = β/gm.
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BJT amplifiers with passive bias

The BJT configurations are very similar to their MOSFET coun-
terparts. One crucial difference is that the BJT allows some
current to flow through the base terminal. This often means
that BJT amplifiers have finite input resistance, which can create
resistive coupling effects at the input terminals. We’ll begin our
study with a simplified analysis and then consider the terminal
resistances afterward.

RC

RE

RB1

RB2

VCC

VB

VC

VE
CC1

vIN

CC2

vOUT
Rbase

Rcoll.

RE

gmvbe

RC � Rcoll.

rπ

Rsig � Rbase

vin
vout

ic

ie ≈ ic

Figure 150: Common-Emitter configuration based on
the voltage-divider bias network, and its simplified
small-signal model.

In order to simplify our analyses, we’ll assume that the
resistance seen looking into the BJT’s collector terminal is very
large, much larger than RC. We’ll furthermore assume that the
input resistance looking into the base is very large compared
to the equivalent series resistance of the signal source, and
that β is very large so ie ≈ ic, and that gm is very large so that
gmRE � 1. With all of these assumptions, the gain is found by
the following analysis

vout = −gmvbeRC

vbe ≈ vin − ieRE = vin +
voutRE

RC

⇒ vout ≈ −gmRC

(
vin +

voutRE
RC

)
⇒ vout

vin

≈ −gmRC
1 + gmRE

≈ −RC
RE

.

RC

RE

RB

VCC

VB

VC

VE
CC1

vIN

CC2

vOUT

Figure 151: Common-emitter configuration based on
the feedback bias network.

In the feedback-biased case, we may reach a similar conclu-
sion if the value of RB is much larger than RC and also much
larger than Rsig. In that case, the negative feedback loop created
by RB will have little impact on the small-signal analysis, and
we arrive at the same result for the gain.
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Using the bias network from Example 29, we introduce input and output signals using the capacitive-
coupled connections shown in Figure 151. A bypass capacitor is used to eliminate the AC influence of
RE, so the AC gain should be −gmRE. Since IC ≈ 1 mA, the transconductance and gain should be

gm =
1 mA
26 mV

= 38.46 mA/V

⇒ −gmRC = −115 V/V

The simulation verifies a gain of 104.5 V/V, which is close to our prediction. The small discrepancy is
due to the assumptions and approximations made in our analysis.

EveryCircuit Demonstration 46 (Common-Emitter with feedback bias).

http://everycircuit.com/circuit/6668810910695424
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